def total_length_selected(ed='empty', coords='empty', ob='empty'):
'''Returns the total length of all edge segments'''
if ob == 'empty':
ob = bpy.context.object
if coords == 'empty':
coords = get_coords(ob)
if ed == 'empty':
ed = get_edge_idx(ob)
edc = coords[ed]
e1 = edc[:, 0]
e2 = edc[:, 1]
ee1 = e1 - e2
sel = get_selected_edges(ob)
ee = ee1[sel]
leng = np.einsum('ij,ij->i', ee, ee)
return np.sum(np.sqrt(leng))
python类einsum()的实例源码
def transitions_old(width, height, configs=None, one_per_state=False):
digit = width * height
if configs is None:
configs = generate_configs(digit)
if one_per_state:
def pickone(thing):
index = np.random.randint(0,len(thing))
return thing[index]
transitions = np.array([
generate(
[c1,pickone(successors(c1,width,height))],width,height)
for c1 in configs ])
else:
transitions = np.array([ generate([c1,c2],width,height)
for c1 in configs for c2 in successors(c1,width,height) ])
return np.einsum('ab...->ba...',transitions)
def puzzle_plot(p):
p.setup()
def name(template):
return template.format(p.__name__)
from itertools import islice
configs = list(islice(p.generate_configs(9), 1000)) # be careful, islice is not immutable!!!
import numpy.random as random
random.shuffle(configs)
configs = configs[:10]
puzzles = p.generate(configs, 3, 3)
print(puzzles.shape, "mean", puzzles.mean(), "stdev", np.std(puzzles))
plot_image(puzzles[-1], name("{}.png"))
plot_image(np.clip(puzzles[-1]+np.random.normal(0,0.1,puzzles[-1].shape),0,1),name("{}+noise.png"))
plot_image(np.round(np.clip(puzzles[-1]+np.random.normal(0,0.1,puzzles[-1].shape),0,1)),name("{}+noise+round.png"))
plot_grid(puzzles, name("{}s.png"))
_transitions = p.transitions(3,3,configs=configs)
print(_transitions.shape)
transitions_for_show = \
np.einsum('ba...->ab...',_transitions) \
.reshape((-1,)+_transitions.shape[2:])
print(transitions_for_show.shape)
plot_grid(transitions_for_show, name("{}_transitions.png"))
def run(ae,xs):
zs = ae.encode_binary(xs)
ys = ae.decode_binary(zs)
mod_ys = []
correlations = []
print(ys.shape)
print("corrlations:")
print("bit \ image {}".format(range(len(xs))))
for i in range(ae.N):
mod_zs = np.copy(zs)
# increase the latent value from 0 to 1 and check the difference
for j in range(11):
mod_zs[:,i] = j / 10.0
mod_ys.append(ae.decode_binary(mod_zs))
zero_zs,one_zs = np.copy(zs),np.copy(zs)
zero_zs[:,i] = 0.
one_zs[:,i] = 1.
correlation = np.mean(np.square(ae.decode_binary(zero_zs) - ae.decode_binary(one_zs)),
axis=(1,2))
correlations.append(correlation)
print("{:>5} {}".format(i,correlation))
plot_grid2(np.einsum("ib...->bi...",np.array(mod_ys)).reshape((-1,)+ys.shape[1:]),
w=11,path=ae.local("dump_significance.png"))
return np.einsum("ib->bi",correlations)
def buildFock(self):
"""Routine to build the AO basis Fock matrix"""
if self.direct:
if self.incFockRst: # restart incremental fock build?
self.G = formPT(self.P,np.zeros_like(self.P),self.bfs,
self.nbasis,self.screen,self.scrTol)
self.G = 0.5*(self.G + self.G.T)
self.F = self.Core.astype('complex') + self.G
else:
self.G = formPT(self.P,self.P_old,self.bfs,self.nbasis,
self.screen,self.scrTol)
self.G = 0.5*(self.G + self.G.T)
self.F = self.F_old + self.G
else:
self.J = np.einsum('pqrs,sr->pq', self.TwoE.astype('complex'),self.P)
self.K = np.einsum('psqr,sr->pq', self.TwoE.astype('complex'),self.P)
self.G = 2.*self.J - self.K
self.F = self.Core.astype('complex') + self.G
def pointsInRegion(regNum, vor, p, overlap=0.0):
"""
returns the subset of points p that are inside the regNum region of the voronoi object
vor. The boundaries of the region are extended by an amount given by 'overlap'.
"""
reg = vor.regions[vor.point_region[regNum]] # region associated with the point
if -1 in reg:
raise Exception('Open region associated with generator')
nVerts = len(reg) # number of verticies in the region
p0 = vor.points[regNum]
for i in range(len(reg)):
vert1, vert2 = vor.vertices[reg[i]], vor.vertices[reg[(i + 1) % len(reg)]]
dr = vert1 - vert2 # edge
dr = dr / numpy.linalg.norm(dr) # normalize
dn = numpy.array([dr[1], -dr[0]]) # normal to edge
dn = dn if numpy.dot(dn, vert2 - p0[:2]) > 0 else -dn # orient so that the normal is outwards
d1 = numpy.einsum('i,ji', dn, vert2 + dn * overlap - p[:, :2])
p = p[d1 * numpy.dot(dn, vert2 - p0[:2]) > 0]
return p
def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
np.einsum('ijklm,ijn->', a, b))
# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
[[[1, 3], [3, 9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]]])
def test_einsum_all_contig_non_contig_output(self):
# Issue gh-5907, tests that the all contiguous special case
# actually checks the contiguity of the output
x = np.ones((5, 5))
out = np.ones(10)[::2]
correct_base = np.ones(10)
correct_base[::2] = 5
# Always worked (inner iteration is done with 0-stride):
np.einsum('mi,mi,mi->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 1:
out = np.ones(10)[::2]
np.einsum('im,im,im->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 2, buffering causes x to be contiguous but
# special cases do not catch the operation before:
out = np.ones((2, 2, 2))[..., 0]
correct_base = np.ones((2, 2, 2))
correct_base[..., 0] = 2
x = np.ones((2, 2), np.float32)
np.einsum('ij,jk->ik', x, x, out=out)
assert_array_equal(out.base, correct_base)
def dihedral_transform_batch(x):
g = np.random.randint(low=0, high=8, size=x.shape[0])
h, w = x.shape[-2:]
hh = (h - 1) / 2.
hw = (w - 1) / 2.
I, J = np.meshgrid(np.linspace(-hh, hh, x.shape[-2]), np.linspace(-hw, hw, x.shape[-1]))
C = np.r_[[I, J]]
D4C = np.einsum('...ij,jkl->...ikl', D4, C)
D4C[:, 0] += hh
D4C[:, 1] += hw
D4C = D4C.astype(int)
x_out = np.empty_like(x)
for i in range(x.shape[0]):
I, J = D4C[g[i]]
x_out[i, :] = x[i][:, J, I]
return x_out
def get_vol(simplex):
# Compute the volume via the Cayley-Menger determinant
# <http://mathworld.wolfram.com/Cayley-MengerDeterminant.html>. One
# advantage is that it can compute the volume of the simplex indenpendent
# of the dimension of the space where it's embedded.
# compute all edge lengths
edges = numpy.subtract(simplex[:, None], simplex[None, :])
ei_dot_ej = numpy.einsum('...k,...k->...', edges, edges)
j = simplex.shape[0] - 1
a = numpy.empty((j+2, j+2) + ei_dot_ej.shape[2:])
a[1:, 1:] = ei_dot_ej
a[0, 1:] = 1.0
a[1:, 0] = 1.0
a[0, 0] = 0.0
a = numpy.moveaxis(a, (0, 1), (-2, -1))
det = numpy.linalg.det(a)
vol = numpy.sqrt((-1.0)**(j+1) / 2**j / math.factorial(j)**2 * det)
return vol
def scalar_product_interval(anchors, indizes_1, indizes_2):
q = (anchors[1][0]-anchors[0][0])
vector_1 = np.vstack([
anchors[0][1][indizes_1], # a_1
anchors[0][2][indizes_1] * q, # b_1
anchors[1][1][indizes_1], # c_1
anchors[1][2][indizes_1] * q, # d_1
])
vector_2 = np.vstack([
anchors[0][1][indizes_2], # a_2
anchors[0][2][indizes_2] * q, # b_2
anchors[1][1][indizes_2], # c_2
anchors[1][2][indizes_2] * q, # d_2
])
return np.einsum(
vector_1, [0,2],
sp_matrix, [0,1],
vector_2, [1,2]
)*q
def scalar_product_partial(anchors, indizes_1, indizes_2, start):
q = (anchors[1][0]-anchors[0][0])
z = (start-anchors[1][0]) / q
vector_1 = np.vstack([
anchors[0][1][indizes_1], # a_1
anchors[0][2][indizes_1] * q, # b_1
anchors[1][1][indizes_1], # c_1
anchors[1][2][indizes_1] * q, # d_1
])
vector_2 = np.vstack([
anchors[0][1][indizes_2], # a_2
anchors[0][2][indizes_2] * q, # b_2
anchors[1][1][indizes_2], # c_2
anchors[1][2][indizes_2] * q, # d_2
])
return np.einsum(
vector_1, [0,2],
partial_sp_matrix(z), [0,1],
vector_2, [1,2]
)*q
def mvl(pha, amp, optimize):
"""Mean Vector Length (Canolty, 2006).
Parameters
----------
pha : array_like
Array of phases of shapes (npha, ..., npts)
amp : array_like
Array of amplitudes of shapes (namp, ..., npts)
Returns
-------
pac : array_like
PAC of shape (npha, namp, ...)
"""
# Number of time points :
npts = pha.shape[-1]
return np.abs(np.einsum('i...j, k...j->ik...', amp, np.exp(1j * pha),
optimize=optimize)) / npts
def ps(pha, amp, optimize):
"""Phase Synchrony (Penny, 2008; Cohen, 2008).
Parameters
----------
pha : array_like
Array of phases of shapes (npha, ..., npts)
amp : array_like
Array of amplitudes of shapes (namp, ..., npts)
Returns
-------
pac : array_like
PAC of shape (npha, namp, ...)
"""
# Number of time points :
npts = pha.shape[-1]
pac = np.einsum('i...j, k...j->ik...', np.exp(-1j * amp), np.exp(1j * pha),
optimize=optimize)
return np.abs(pac) / npts
def half_space(self):
"""Return the half space polytope respresentation of the infinite
beam."""
# add half beam width along the normal direction to each of the points
half = self.normal * self.size / 2
edges = [Line(self.p1 + half, self.p2 + half),
Line(self.p1 - half, self.p2 - half)]
A = np.ndarray((len(edges), self.dim))
B = np.ndarray(len(edges))
for i in range(0, 2):
A[i, :], B[i] = edges[i].standard
# test for positive or negative side of line
if np.einsum('i, i', self.p1._x, A[i, :]) > B[i]:
A[i, :] = -A[i, :]
B[i] = -B[i]
p = pt.Polytope(A, B)
return p
def forward_prop_random_thru_post_mm(self, model, mx, vx, mu, Su):
Kuu_noiseless = compute_kernel(
2 * model.ls, 2 * model.sf, model.zu, model.zu)
Kuu = Kuu_noiseless + np.diag(jitter * np.ones((self.M, )))
# TODO: remove inv
Kuuinv = np.linalg.inv(Kuu)
A = np.dot(Kuuinv, mu)
Smm = Su + np.outer(mu, mu)
B_sto = np.dot(Kuuinv, np.dot(Smm, Kuuinv)) - Kuuinv
psi0 = np.exp(2.0 * model.sf)
psi1, psi2 = compute_psi_weave(
2 * model.ls, 2 * model.sf, mx, vx, model.zu)
mout = np.einsum('nm,md->nd', psi1, A)
Bpsi2 = np.einsum('ab,nab->n', B_sto, psi2)[:, np.newaxis]
vout = psi0 + Bpsi2 - mout**2
return mout, vout
def _forward_prop_deterministic_thru_post(self, x, return_info=False):
"""Propagate deterministic inputs thru posterior
Args:
x (float): input values, size K x Din
return_info (bool, optional): Description
Returns:
float, size K x Dout: output means
float, size K x Dout: output variances
"""
psi0 = np.exp(2 * self.sf)
psi1 = compute_kernel(2 * self.ls, 2 * self.sf, x, self.zu)
mout = np.einsum('nm,dm->nd', psi1, self.A)
Bpsi2 = np.einsum('dab,na,nb->nd', self.B_det, psi1, psi1)
vout = psi0 + Bpsi2
if return_info:
return mout, vout, psi1
else:
return mout, vout
def _forward_prop_random_thru_post_mm(self, mx, vx, return_info=False):
"""Propagate uncertain inputs thru posterior, using Moment Matching
Args:
mx (float): input means, size K x Din
vx (TYPE): input variances, size K x Din
return_info (bool, optional): Description
Returns:
float, size K x Dout: output means
float, size K x Dout: output variances
"""
psi0 = np.exp(2.0 * self.sf)
psi1, psi2 = compute_psi_weave(
2 * self.ls, 2 * self.sf, mx, vx, self.zu)
mout = np.einsum('nm,dm->nd', psi1, self.A)
Bpsi2 = np.einsum('dab,nab->nd', self.B_sto, psi2)
vout = psi0 + Bpsi2 - mout**2
if return_info:
return mout, vout, psi1, psi2
else:
return mout, vout
def sample(self, x):
"""Summary
Args:
x (TYPE): Description
Returns:
TYPE: Description
"""
Su = self.Su
mu = self.mu
Lu = np.linalg.cholesky(Su)
epsilon = np.random.randn(self.Dout, self.M)
u_sample = mu + np.einsum('dab,db->da', Lu, epsilon)
kff = compute_kernel(2 * self.ls, 2 * self.sf, x, x)
kff += np.diag(JITTER * np.ones(x.shape[0]))
kfu = compute_kernel(2 * self.ls, 2 * self.sf, x, self.zu)
qfu = np.dot(kfu, self.Kuuinv)
mf = np.einsum('nm,dm->nd', qfu, u_sample)
vf = kff - np.dot(qfu, kfu.T)
Lf = np.linalg.cholesky(vf)
epsilon = np.random.randn(x.shape[0], self.Dout)
f_sample = mf + np.einsum('ab,bd->ad', Lf, epsilon)
return f_sample
def _forward_prop_deterministic_thru_cav(self, x):
"""Propagate deterministic inputs thru cavity
Args:
x (float): input values, size K x Din
Returns:
float, size K x Dout: output means
float, size K x Dout: output variances
float, size K x M: cross covariance matrix
"""
kff = np.exp(2 * self.sf)
kfu = compute_kernel(2 * self.ls, 2 * self.sf, x, self.zu)
mout = np.einsum('nm,dm->nd', kfu, self.Ahat)
Bkfukuf = np.einsum('dab,na,nb->nd', self.Bhat_det, kfu, kfu)
vout = kff + Bkfukuf
return mout, vout, kfu
def _forward_prop_random_thru_cav_mm(self, mx, vx):
"""Propagate uncertain inputs thru cavity, using simple Moment Matching
Args:
mx (float): input means, size K x Din
vx (TYPE): input variances, size K x Din
Returns:
output means and variances, and intermediate info for backprop
"""
psi0 = np.exp(2 * self.sf)
psi1, psi2 = compute_psi_weave(
2 * self.ls, 2 * self.sf, mx, vx, self.zu)
mout = np.einsum('nm,dm->nd', psi1, self.Ahat)
Bhatpsi2 = np.einsum('dab,nab->nd', self.Bhat_sto, psi2)
vout = psi0 + Bhatpsi2 - mout**2
return mout, vout, psi1, psi2
def psi1compDer(dL_dpsi1, _psi1, variance, lengthscale, Z, mu, S):
# here are the "statistics" for psi1
# Produced intermediate results: dL_dparams w.r.t. psi1
# _dL_dvariance 1
# _dL_dlengthscale Q
# _dL_dZ MxQ
# _dL_dgamma NxQ
# _dL_dmu NxQ
# _dL_dS NxQ
lengthscale2 = np.square(lengthscale)
Lpsi1 = dL_dpsi1 * _psi1
Zmu = Z[None, :, :] - mu[:, None, :] # NxMxQ
denom = 1. / (S + lengthscale2)
Zmu2_denom = np.square(Zmu) * denom[:, None, :] # NxMxQ
_dL_dvar = Lpsi1.sum() / variance
_dL_dmu = np.einsum('nm,nmq,nq->nq', Lpsi1, Zmu, denom)
_dL_dS = np.einsum('nm,nmq,nq->nq', Lpsi1, (Zmu2_denom - 1.), denom) / 2.
_dL_dZ = -np.einsum('nm,nmq,nq->mq', Lpsi1, Zmu, denom)
_dL_dl = np.einsum('nm,nmq,nq->q', Lpsi1, (Zmu2_denom +
(S / lengthscale2)[:, None, :]), denom * lengthscale)
return _dL_dvar, _dL_dl, _dL_dZ, _dL_dmu, _dL_dS
def kfucompDer(dL_dkfu, kfu, variance, lengthscale, Z, mu, grad_x):
# here are the "statistics" for psi1
# Produced intermediate results: dL_dparams w.r.t. psi1
# _dL_dvariance 1
# _dL_dlengthscale Q
# _dL_dZ MxQ
lengthscale2 = np.square(lengthscale)
Lpsi1 = dL_dkfu * kfu
Zmu = Z[None, :, :] - mu[:, None, :] # NxMxQ
_dL_dvar = Lpsi1.sum() / variance
_dL_dZ = -np.einsum('nm,nmq->mq', Lpsi1, Zmu / lengthscale2)
_dL_dl = np.einsum('nm,nmq->q', Lpsi1, np.square(Zmu) / lengthscale**3)
if grad_x:
_dL_dx = np.einsum('nm,nmq->nq', Lpsi1, Zmu / lengthscale2)
return _dL_dvar, _dL_dl, _dL_dZ, _dL_dx
else:
return _dL_dvar, _dL_dl, _dL_dZ
def _forward_prop_deterministic_thru_cav(self, n, x, alpha):
"""Summary
Args:
n (TYPE): Description
x (TYPE): Description
alpha (TYPE): Description
Returns:
TYPE: Description
"""
muhat, Suhat, SuinvMuhat, Suinvhat = self.compute_cavity(n, alpha)
Kuuinv = self.Kuuinv
Ahat = np.einsum('ab,ndb->nda', Kuuinv, muhat)
Bhat = np.einsum(
'ab,ndbc->ndac',
Kuuinv, np.einsum('ndab,bc->ndac', Suhat, Kuuinv)) - Kuuinv
kff = np.exp(2 * self.sf)
kfu = compute_kernel(2 * self.ls, 2 * self.sf, x, self.zu)
mout = np.einsum('nm,ndm->nd', kfu, Ahat)
Bkfukuf = np.einsum('ndab,na,nb->nd', Bhat, kfu, kfu)
vout = kff + Bkfukuf
extra_res = [muhat, Suhat, SuinvMuhat, Suinvhat, kfu, Ahat, Bhat]
return mout, vout, extra_res
def _forward_prop_deterministic_thru_post(self, x):
"""Summary
Args:
x (TYPE): Description
Returns:
TYPE: Description
"""
Kuuinv = self.Kuuinv
A = np.einsum('ab,db->da', Kuuinv, self.mu)
B = np.einsum(
'ab,dbc->dac',
Kuuinv, np.einsum('dab,bc->dac', self.Su, Kuuinv)) - Kuuinv
kff = np.exp(2 * self.sf)
kfu = compute_kernel(2 * self.ls, 2 * self.sf, x, self.zu)
mout = np.einsum('nm,dm->nd', kfu, A)
Bpsi2 = np.einsum('dab,na,nb->nd', B, kfu, kfu)
vout = kff + Bpsi2
return mout, vout
# TODO
def _forward_prop_random_thru_post_mm(self, mx, vx):
"""Summary
Args:
mx (TYPE): Description
vx (TYPE): Description
Returns:
TYPE: Description
"""
Kuuinv = self.Kuuinv
A = np.einsum('ab,db->da', Kuuinv, self.mu)
Smm = self.Su + np.einsum('da,db->dab', self.mu, self.mu)
B = np.einsum(
'ab,dbc->dac',
Kuuinv, np.einsum('dab,bc->dac', Smm, Kuuinv)) - Kuuinv
psi0 = np.exp(2.0 * self.sf)
psi1, psi2 = compute_psi_weave(
2 * self.ls, 2 * self.sf, mx, vx, self.zu)
mout = np.einsum('nm,dm->nd', psi1, A)
Bpsi2 = np.einsum('dab,nab->nd', B, psi2)
vout = psi0 + Bpsi2 - mout**2
return mout, vout
def sample(self, x):
"""Summary
Args:
x (TYPE): Description
Returns:
TYPE: Description
"""
Su = self.Su
mu = self.mu
Lu = np.linalg.cholesky(Su)
epsilon = np.random.randn(self.Dout, self.M)
u_sample = mu + np.einsum('dab,db->da', Lu, epsilon)
kff = compute_kernel(2 * self.ls, 2 * self.sf, x, x)
kff += np.diag(JITTER * np.ones(x.shape[0]))
kfu = compute_kernel(2 * self.ls, 2 * self.sf, x, self.zu)
qfu = np.dot(kfu, self.Kuuinv)
mf = np.einsum('nm,dm->nd', qfu, u_sample)
vf = kff - np.dot(qfu, kfu.T)
Lf = np.linalg.cholesky(vf)
epsilon = np.random.randn(x.shape[0], self.Dout)
f_sample = mf + np.einsum('ab,bd->ad', Lf, epsilon)
return f_sample
def compute_cavity(self, n, alpha=1.0):
"""Summary
Args:
n (TYPE): Description
alpha (float, optional): Description
Returns:
TYPE: Description
"""
# compute the leave one out moments
t1n = self.t1[n, :, :]
t2n = self.t2[n, :, :, :]
Suinvhat = self.Suinv - alpha * t2n
SuinvMuhat = self.SuinvMu - alpha * t1n
Suhat = np.linalg.inv(Suinvhat)
muhat = np.einsum('ndab,ndb->nda', Suhat, SuinvMuhat)
return muhat, Suhat, SuinvMuhat, Suinvhat
def forward_prop_thru_post(self, x):
"""Summary
Args:
x (TYPE): Description
Returns:
TYPE: Description
"""
Kuuinv = self.Kuuinv
A = np.einsum('ab,db->da', Kuuinv, self.mu)
B = np.einsum(
'ab,dbc->dac',
Kuuinv, np.einsum('dab,bc->dac', self.Su, Kuuinv)) - Kuuinv
kff = np.exp(2 * self.sf)
kfu = compute_kernel(2 * self.ls, 2 * self.sf, x, self.zu)
mout = np.einsum('nm,dm->nd', kfu, A)
Bpsi2 = np.einsum('dab,na,nb->nd', B, kfu, kfu)
vout = kff + Bpsi2
return mout, vout
def update_posterior(self, x_train=None, new_hypers=False):
"""Summary
Returns:
TYPE: Description
"""
# compute the posterior approximation
if new_hypers and x_train is not None:
Kfu = compute_kernel(2*self.ls, 2*self.sf, x_train, self.zu)
KuuinvKuf = np.dot(self.Kuuinv, Kfu.T)
self.Kfu = Kfu
self.KuuinvKuf = KuuinvKuf
self.Kff_diag = compute_kernel_diag(2*self.ls, 2*self.sf, x_train)
KuuinvKuf_div_var = np.einsum('an,nd->dan', self.KuuinvKuf, 1.0 / self.variances)
T2u = np.einsum('dan,bn->dab', KuuinvKuf_div_var, self.KuuinvKuf)
T1u = np.einsum('bn,nd->db', self.KuuinvKuf, self.means / self.variances)
Vinv = self.Kuuinv + T2u
self.Suinv = Vinv
self.Su = np.linalg.inv(Vinv)
self.mu = np.einsum('dab,db->da', self.Su, T1u)
self.gamma = np.einsum('ab,db->da', self.Kuuinv, self.mu)
self.beta = self.Kuuinv - np.einsum('ab,dbc->dac',
self.Kuuinv,
np.einsum('dab,bc->dac', self.Su, self.Kuuinv))