python类nanmin()的实例源码

ScatterPlotItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def dataBounds(self, ax, frac=1.0, orthoRange=None):
        if frac >= 1.0 and orthoRange is None and self.bounds[ax] is not None:
            return self.bounds[ax]

        #self.prepareGeometryChange()
        if self.data is None or len(self.data) == 0:
            return (None, None)

        if ax == 0:
            d = self.data['x']
            d2 = self.data['y']
        elif ax == 1:
            d = self.data['y']
            d2 = self.data['x']

        if orthoRange is not None:
            mask = (d2 >= orthoRange[0]) * (d2 <= orthoRange[1])
            d = d[mask]
            d2 = d2[mask]

        if frac >= 1.0:
            self.bounds[ax] = (np.nanmin(d) - self._maxSpotWidth*0.7072, np.nanmax(d) + self._maxSpotWidth*0.7072)
            return self.bounds[ax]
        elif frac <= 0.0:
            raise Exception("Value for parameter 'frac' must be > 0. (got %s)" % str(frac))
        else:
            mask = np.isfinite(d)
            d = d[mask]
            return np.percentile(d, [50 * (1 - frac), 50 * (1 + frac)])
ImageView.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def quickMinMax(self, data):
        """
        Estimate the min/max values of *data* by subsampling.
        """
        while data.size > 1e6:
            ax = np.argmax(data.shape)
            sl = [slice(None)] * data.ndim
            sl[ax] = slice(None, None, 2)
            data = data[sl]
        return nanmin(data), nanmax(data)
Monitor.py 文件源码 项目:AnomalyDetection 作者: JayZhuCoding 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def normalize_data(self, values):
        normalized_values = copy.deepcopy(values)
        data = np.array(values, dtype=float)[:, 0:5]
        data_min = np.nanmin(data, 0)
        data_max = np.nanmax(data, 0)
        print data_min
        print data_max
        for i in range(len(values)):
            for j in range(5):
                normalized_values[i][j] = np.abs(values[i][j] - data_min[j]) / np.abs(data_max[j] - data_min[j])
        return normalized_values, data_min, data_max
csmatch.py 文件源码 项目:SNPmatch 作者: Gregor-Mendel-Institute 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def writeBinData(out_file, i, GenotypeData, ScoreList, NumInfoSites):
  num_lines = len(GenotypeData.accessions)
  (likeliScore, likeliHoodRatio) = snpmatch.calculate_likelihoods(ScoreList, NumInfoSites)
  if len(likeliScore) > 0:
    NumAmb = np.where(likeliHoodRatio < snpmatch.lr_thres)[0]
    if len(NumAmb) >= 1 and len(NumAmb) < num_lines:
      try:
        nextLikeli = np.nanmin(likeliHoodRatio[np.where(likeliHoodRatio > snpmatch.lr_thres)[0]])
      except:
        nextLikeli = 1
      for k in NumAmb:
        score = float(ScoreList[k])/NumInfoSites[k]
        out_file.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (GenotypeData.accessions[k], int(ScoreList[k]), NumInfoSites[k], score, likeliScore[k], nextLikeli, len(NumAmb), i+1))
util.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def image_as_uint8(im):
    """ Convert the given image to uint8

    If the dtype is already uint8, it is returned as-is. If the image
    is float, and all values are between 0 and 1, the values are
    multiplied by 255. In all other situations, the values are scaled
    such that the minimum value becomes 0 and the maximum value becomes
    255.
    """
    if not isinstance(im, np.ndarray):
        raise ValueError('image must be a numpy array')
    dtype_str = str(im.dtype)
    # Already uint8?
    if dtype_str == 'uint8':
        return im
    # Handle float
    mi, ma = np.nanmin(im), np.nanmax(im)
    if dtype_str.startswith('float'):
        if mi >= 0 and ma <= 1:
            mi, ma = 0, 1
    # Now make float copy before we scale
    im = im.astype('float32')
    # Scale the values between 0 and 255
    if np.isfinite(mi) and np.isfinite(ma):
        if mi:
            im -= mi
        if ma != 255:
            im *= 255.0 / (ma - mi)
        assert np.nanmax(im) < 256
    return im.astype(np.uint8)


# currently not used ... the only use it to easly provide the global meta info
test_nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_masked(self):
        mat = np.ma.fix_invalid(_ndat)
        msk = mat._mask.copy()
        for f in [np.nanmin]:
            res = f(mat, axis=1)
            tgt = f(_ndat, axis=1)
            assert_equal(res, tgt)
            assert_equal(mat._mask, msk)
            assert_(not np.isinf(mat).any())
test_nanfunctions.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_nanmin(self):
        tgt = np.min(self.mat)
        for mat in self.integer_arrays():
            assert_equal(np.nanmin(mat), tgt)
slicemodel.py 文件源码 项目:segyviewer 作者: Statoil 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def data(self, data):
        """ :type: numppy.ndarray """
        self._assert_shape(data, self._x_indexes, self._y_indexes)
        data[data == -np.inf] = 0.0
        data[data == np.inf] = 0.0
        self._data = data
        self._min_value = np.nanmin(self.data)
        self._max_value = np.nanmax(self.data)
        self._data_x_indexes = list(range(data.shape[0]))
        self._data_y_indexes = list(range(data.shape[1]))
        self._dirty = False
libscores.py 文件源码 项目:AutoML4 作者: djajetic 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def sanitize_array(array):
    ''' Replace NaN and Inf (there should not be any!)'''
    a=np.ravel(array)
    maxi = np.nanmax((filter(lambda x: x != float('inf'), a))) # Max except NaN and Inf
    mini = np.nanmin((filter(lambda x: x != float('-inf'), a))) # Mini except NaN and Inf
    array[array==float('inf')]=maxi
    array[array==float('-inf')]=mini
    mid = (maxi + mini)/2
    array[np.isnan(array)]=mid
    return array
libscores.py 文件源码 项目:automl_gpu 作者: abhishekkrthakur 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def sanitize_array(array):
    ''' Replace NaN and Inf (there should not be any!)'''
    a=np.ravel(array)
    maxi = np.nanmax((filter(lambda x: x != float('inf'), a))) # Max except NaN and Inf
    mini = np.nanmin((filter(lambda x: x != float('-inf'), a))) # Mini except NaN and Inf
    array[array==float('inf')]=maxi
    array[array==float('-inf')]=mini
    mid = (maxi + mini)/2
    array[np.isnan(array)]=mid
    return array
HARKinterpolation.py 文件源码 项目:HARK 作者: econ-ark 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _evaluate(self,x):
        '''
        Returns the level of the function at each value in x as the minimum among
        all of the functions.  Only called internally by HARKinterpolator1D.__call__.
        '''
        if _isscalar(x):
            y = np.nanmin([f(x) for f in self.functions])
        else:
            m = len(x)
            fx = np.zeros((m,self.funcCount))
            for j in range(self.funcCount):
                fx[:,j] = self.functions[j](x)
            y = np.nanmin(fx,axis=1)       
        return y
HARKinterpolation.py 文件源码 项目:HARK 作者: econ-ark 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _evaluate(self,x,y):
        '''
        Returns the level of the function at each value in (x,y) as the minimum
        among all of the functions.  Only called internally by
        HARKinterpolator2D.__call__.
        '''
        if _isscalar(x):
            f = np.nanmin([f(x,y) for f in self.functions])
        else:
            m = len(x)
            temp = np.zeros((m,self.funcCount))
            for j in range(self.funcCount):
                temp[:,j] = self.functions[j](x,y)
            f = np.nanmin(temp,axis=1)       
        return f
HARKinterpolation.py 文件源码 项目:HARK 作者: econ-ark 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _evaluate(self,x,y,z):
        '''
        Returns the level of the function at each value in (x,y,z) as the minimum
        among all of the functions.  Only called internally by
        HARKinterpolator3D.__call__.
        '''
        if _isscalar(x):
            f = np.nanmin([f(x,y,z) for f in self.functions])
        else:
            m = len(x)
            temp = np.zeros((m,self.funcCount))
            for j in range(self.funcCount):
                temp[:,j] = self.functions[j](x,y,z)
            f = np.nanmin(temp,axis=1)       
        return f
data.py 文件源码 项目:trappist1 作者: rodluger 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def replot(self, val):
    '''

    '''

    # Update plot
    self.cadence = int(val)
    self.implot.set_data(self.images[int(val)])
    self.implot.set_clim(vmin = np.nanmin(self.images[int(val)]), vmax = np.nanmax(self.images[int(val)]))
    self.tracker1.set_xdata([self.time[self.cadence], self.time[self.cadence]])
    self.tracker2.set_xdata([self.time[self.cadence], self.time[self.cadence]])
    self.update_bkg()
    self.update_lc()
    self.update_lcbkg()
    self.fig.canvas.draw()
plot.py 文件源码 项目:tadtool 作者: vaquerizaslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def vmin(self):
        return self._vmin if self._vmin else np.nanmin(self.hic_matrix)
plot.py 文件源码 项目:tadtool 作者: vaquerizaslab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _plot(self, region=None, cax=None):
        da_sub, regions_sub = sub_data_regions(self.da, self.regions, region)

        da_sub_masked = np.ma.MaskedArray(da_sub, mask=np.isnan(da_sub))
        bin_coords = np.r_[[(x.start - 1) for x in regions_sub], regions_sub[-1].end]
        x, y = np.meshgrid(bin_coords, self.window_sizes)

        self.mesh = self.ax.pcolormesh(x, y, da_sub_masked, cmap=self.colormap, vmax=self.vmax)
        self.colorbar = plt.colorbar(self.mesh, cax=cax, orientation="vertical")
        self.window_size_line = self.ax.axhline(self.current_window_size, color='red')

        if self.log_y:
            self.ax.set_yscale("log")
        self.ax.set_ylim((np.nanmin(self.window_sizes), np.nanmax(self.window_sizes)))
plot.py 文件源码 项目:tadtool 作者: vaquerizaslab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _plot(self, region=None, cax=None):
        self._new_region(region)
        bin_coords = [(x.start - 1) for x in self.sr]
        ds = self.da_sub[self.init_row]
        self.line, = self.ax.plot(bin_coords, ds)
        if not self.is_symmetric:
            self.current_cutoff = (self.ax.get_ylim()[1] - self.ax.get_ylim()[0]) / 2 + self.ax.get_ylim()[0]
        else:
            self.current_cutoff = self.ax.get_ylim()[1]/ 2
        self.ax.axhline(0.0, linestyle='dashed', color='grey')
        self.cutoff_line = self.ax.axhline(self.current_cutoff, color='r')
        if self.is_symmetric:
            self.cutoff_line_mirror = self.ax.axhline(-1*self.current_cutoff, color='r')
        self.ax.set_ylim((np.nanmin(ds), np.nanmax(ds)))
plot.py 文件源码 项目:tadtool 作者: vaquerizaslab 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def update(self, ix=None, cutoff=None, region=None, update_canvas=True):
        if region is not None:
            self._new_region(region)

        if ix is not None and ix != self.current_ix:
            ds = self.da_sub[ix]
            self.current_ix = ix
            self.line.set_ydata(ds)
            self.ax.set_ylim((np.nanmin(ds), np.nanmax(ds)))

            if cutoff is None:
                if not self.is_symmetric:
                    self.update(cutoff=(self.ax.get_ylim()[1]-self.ax.get_ylim()[0])/2 + self.ax.get_ylim()[0],
                                update_canvas=False)
                else:
                    self.update(cutoff=self.ax.get_ylim()[1] / 2, update_canvas=False)

            if update_canvas:
                self.fig.canvas.draw()

        if cutoff is not None and cutoff != self.current_cutoff:
            if self.is_symmetric:
                self.current_cutoff = abs(cutoff)
            else:
                self.current_cutoff = cutoff
            self.cutoff_line.set_ydata(self.current_cutoff)
            if self.is_symmetric:
                self.cutoff_line_mirror.set_ydata(-1*self.current_cutoff)

            if update_canvas:
                self.fig.canvas.draw()
core.py 文件源码 项目:smoomapy 作者: mthh 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def define_levels(self, nb_class, disc_func):
        pot = self.pot
        _min = np.nanmin(pot)

        if not nb_class:
            nb_class = int(get_opt_nb_class(len(pot)) - 2)
        if not disc_func or "prog_geom" in disc_func:
            levels = [_min] + [
                np.nanmax(pot) / i for i in range(1, nb_class + 1)][::-1]
        elif "equal_interval" in disc_func:
            _bin = np.nanmax(pot) / nb_class
            levels = [_min] + [_bin * i for i in range(1, nb_class+1)]
        elif "percentiles" in disc_func:
            levels = np.percentile(
                np.concatenate((pot[pot.nonzero()], np.array([_min]))),
                np.linspace(0.0, 100.0, nb_class+1))
        elif "jenks" in disc_func:
            levels = list(jenks_breaks(np.concatenate(
                ([_min], pot[pot.nonzero()])), nb_class))
            levels[0] = levels[0] - _min * 0.01
        elif "head_tail" in disc_func:
            levels = head_tail_breaks(np.concatenate(
                ([_min], pot[pot.nonzero()])))
        elif "maximal_breaks" in disc_func:
            levels = maximal_breaks(np.concatenate(
                ([_min], pot[pot.nonzero()])), nb_class)
        else:
            raise ValueError

        return levels
owpolynomialregression.py 文件源码 项目:orange3-educational 作者: biolab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def set_range(self, x_data, y_data):
        min_x, max_x = np.nanmin(x_data), np.nanmax(x_data)
        min_y, max_y = np.nanmin(y_data), np.nanmax(y_data)
        self.plotview.setRange(
            QRectF(min_x, min_y, max_x - min_x, max_y - min_y),
            padding=0.025)
        self.plotview.replot()


问题


面经


文章

微信
公众号

扫码关注公众号