python类product()的实例源码

parameters.py 文件源码 项目:mriqc 作者: poldracklab 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __iter__(self):
        """Iterate over the points in the grid.
        Returns
        -------
        params : iterator over dict of string to any
            Yields dictionaries mapping each estimator parameter to one of its
            allowed values.
        """
        for p in self.param_grid:
            # Always sort the keys of a dictionary, for reproducibility
            items = list(p.items())
            if not items:
                yield {}
            else:
                for estimator, grid_list in items:
                    for grid in grid_list:
                        grid_points = sorted(list(grid.items()))
                        keys, values = zip(*grid_points)
                        for v in product(*values):
                            params = dict(zip(keys, v))
                            yield (estimator, params)
test_keras2_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_activation_layer_params(self):
        options = dict(
            activation = ['tanh', 'relu', 'sigmoid', 'softmax', 'softplus', 'softsign', 'hard_sigmoid', 'elu']
        )

        # Define a function that tests a model
        num_channels = 10
        input_dim = 10
        def build_model(x):
            model = Sequential()
            model.add(Dense(num_channels, input_dim = input_dim))
            model.add(Activation(**dict(zip(options.keys(), x))))
            return x, model

        # Iterate through all combinations
        product = itertools.product(*options.values())
        args = [build_model(p) for p in product]

        # Test the cases
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
            self._run_test(model, param)
test_keras2_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_dense_layer_params(self):
        options = dict(
            activation = ['relu', 'softmax', 'tanh', 'sigmoid', 'softplus', 'softsign', 'elu','hard_sigmoid'],
            use_bias = [True, False],
        )
        # Define a function that tests a model
        input_shape = (10,)
        num_channels = 10
        def build_model(x):
            kwargs = dict(zip(options.keys(), x))
            model = Sequential()
            model.add(Dense(num_channels, input_shape = input_shape, **kwargs))
            return x, model

        # Iterate through all combinations
        product = itertools.product(*options.values())
        args = [build_model(p) for p in product]

        # Test the cases
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            self._run_test(model, param)
test_keras2_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_conv_layer_params(self, model_precision=_MLMODEL_FULL_PRECISION):
        options = dict(
            activation = ['relu', 'tanh', 'sigmoid'], # keras does not support softmax on 4-D
            use_bias = [True, False],
            padding = ['same', 'valid'],
            filters = [1, 3, 5],
            kernel_size = [[5,5]], # fails when sizes are different
        )

        # Define a function that tests a model
        input_shape = (10, 10, 1)
        def build_model(x):
            kwargs = dict(zip(options.keys(), x))
            model = Sequential()
            model.add(Conv2D(input_shape = input_shape, **kwargs))
            return x, model

        # Iterate through all combinations
        product = itertools.product(*options.values())
        args = [build_model(p) for p in product]

        # Test the cases
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            self._run_test(model, param, model_precision=model_precision)
test_keras_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_activation_layer_params(self):
        options = dict(
            activation = ['tanh', 'relu', 'sigmoid', 'softmax', 'softplus', 'softsign']
        )

        # Define a function that tests a model
        num_channels = 10
        input_dim = 10
        def build_model(x):
            model = Sequential()
            model.add(Dense(num_channels, input_dim = input_dim))
            model.add(Activation(**dict(zip(options.keys(), x))))
            return x, model

        # Iterate through all combinations
        product = itertools.product(*options.values())
        args = [build_model(p) for p in product]

        # Test the cases
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
            self._run_test(model, param)
test_keras_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_dense_layer_params(self):
        options = dict(
            activation = ['relu', 'softmax', 'tanh', 'sigmoid'],
            bias = [True, False],
        )

        # Define a function that tests a model
        input_dim = 10
        num_channels = 10
        def build_model(x):
            kwargs = dict(zip(options.keys(), x))
            model = Sequential()
            model.add(Dense(num_channels, input_dim = input_dim, **kwargs))
            return x, model

        # Iterate through all combinations
        product = itertools.product(*options.values())
        args = [build_model(p) for p in product]

        # Test the cases
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            self._run_test(model, param)
util.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def cartesian_product(X):
    '''
    Numpy version of itertools.product or pandas.compat.product.
    Sometimes faster (for large inputs)...

    Examples
    --------
    >>> cartesian_product([list('ABC'), [1, 2]])
    [array(['A', 'A', 'B', 'B', 'C', 'C'], dtype='|S1'),
    array([1, 2, 1, 2, 1, 2])]

    '''

    lenX = np.fromiter((len(x) for x in X), dtype=int)
    cumprodX = np.cumproduct(lenX)

    a = np.roll(cumprodX, 1)
    a[0] = 1

    b = cumprodX[-1] / cumprodX

    return [np.tile(np.repeat(np.asarray(com._values_from_object(x)), b[i]),
                    np.product(a[i]))
            for i, x in enumerate(X)]
test_core.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_addsumprod(self):
        # Tests add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        assert_equal(np.add.reduce(x), add.reduce(x))
        assert_equal(np.add.accumulate(x), add.accumulate(x))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(np.sum(x, axis=0), sum(x, axis=0))
        assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
        assert_equal(np.sum(x, 0), sum(x, 0))
        assert_equal(np.product(x, axis=0), product(x, axis=0))
        assert_equal(np.product(x, 0), product(x, 0))
        assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
        s = (3, 4)
        x.shape = y.shape = xm.shape = ym.shape = s
        if len(s) > 1:
            assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
            assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
            assert_equal(np.sum(x, 1), sum(x, 1))
            assert_equal(np.product(x, 1), product(x, 1))
_camera_opencv_highgui.py 文件源码 项目:AIFun 作者: Plottel 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def get_surface(self, dest_surf = None):
        camera = self.camera

        im = highgui.cvQueryFrame(camera)
        #convert Ipl image to PIL image
        #print type(im)
        if im:
            xx = opencv.adaptors.Ipl2NumPy(im)
            #print type(xx)
            #print xx.iscontiguous()
            #print dir(xx)
            #print xx.shape
            xxx = numpy.reshape(xx, (numpy.product(xx.shape),))

            if xx.shape[2] != 3:
                raise ValueError("not sure what to do about this size")

            pg_img = pygame.image.frombuffer(xxx, (xx.shape[1],xx.shape[0]), "RGB")

            # if there is a destination surface given, we blit onto that.
            if dest_surf:
                dest_surf.blit(pg_img, (0,0))
            return dest_surf
            #return pg_img
test_core.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_addsumprod(self):
        # Tests add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        assert_equal(np.add.reduce(x), add.reduce(x))
        assert_equal(np.add.accumulate(x), add.accumulate(x))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(np.sum(x, axis=0), sum(x, axis=0))
        assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
        assert_equal(np.sum(x, 0), sum(x, 0))
        assert_equal(np.product(x, axis=0), product(x, axis=0))
        assert_equal(np.product(x, 0), product(x, 0))
        assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
        s = (3, 4)
        x.shape = y.shape = xm.shape = ym.shape = s
        if len(s) > 1:
            assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
            assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
            assert_equal(np.sum(x, 1), sum(x, 1))
            assert_equal(np.product(x, 1), product(x, 1))
test_old_ma.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_testAddSumProd(self):
        # Test add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
        self.assertTrue(eq(np.add.reduce(x), add.reduce(x)))
        self.assertTrue(eq(np.add.accumulate(x), add.accumulate(x)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(np.sum(x, axis=0), sum(x, axis=0)))
        self.assertTrue(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
        self.assertTrue(eq(np.sum(x, 0), sum(x, 0)))
        self.assertTrue(eq(np.product(x, axis=0), product(x, axis=0)))
        self.assertTrue(eq(np.product(x, 0), product(x, 0)))
        self.assertTrue(eq(np.product(filled(xm, 1), axis=0),
                           product(xm, axis=0)))
        if len(s) > 1:
            self.assertTrue(eq(np.concatenate((x, y), 1),
                               concatenate((xm, ym), 1)))
            self.assertTrue(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
            self.assertTrue(eq(np.sum(x, 1), sum(x, 1)))
            self.assertTrue(eq(np.product(x, 1), product(x, 1)))
openfoamrawdata.py 文件源码 项目:pyDataView 作者: edwardsmith999 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, fdir, fname, nperbin):

        if (fdir[-1] != '/'): fdir += '/'
        self.fdir = fdir
        self.procxyz = self.get_proc_topology()
        self.procs = int(np.product(self.procxyz))
        print("OpenFOAM_RawData Warning - disable parallel check, assuming always parallel")
        self.parallel_run = True
        #if self.procs != 1:
        #    self.parallel_run = True
        #else:
        #    self.parallel_run = False
        self.grid = self.get_grid()
        self.reclist = self.get_reclist()
        self.maxrec = len(self.reclist) - 1 # count from 0
        self.fname = fname
        self.npercell = nperbin #self.get_npercell()
        self.nu = self.get_nu()
        self.header = None
run.py 文件源码 项目:keras-steering-angle-visualizations 作者: jacobgil 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def visualize_hypercolumns(model, original_img):

    img = np.float32(cv2.resize(original_img, (200, 66))) / 255.0

    layers_extract = [9]

    hc = extract_hypercolumns(model, layers_extract, img)
    avg = np.product(hc, axis=0)
    avg = np.abs(avg)
    avg = avg / np.max(np.max(avg))

    heatmap = cv2.applyColorMap(np.uint8(255 * avg), cv2.COLORMAP_JET)
    heatmap = np.float32(heatmap) / np.max(np.max(heatmap))
    heatmap = cv2.resize(heatmap, original_img.shape[0:2][::-1])

    both = 255 * heatmap * 0.7 + original_img
    both = both / np.max(both)
    return both
loss_weighting.py 文件源码 项目:kaggle_dsb 作者: syagev 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def weight_by_class_balance(truth, classes=None):
    """
    Determines a loss weight map given the truth by balancing the classes from the classes argument.
    The classes argument can be used to only include certain classes (you may for instance want to exclude the background).
    """

    if classes is None:
        # Include all classes
        classes = np.unique(truth)

    weight_map = np.zeros_like(truth, dtype=np.float32)
    total_amount = np.product(truth.shape)

    for c in classes:
        class_mask = np.where(truth==c,1,0)
        class_weight = 1/((np.sum(class_mask)+1e-8)/total_amount)

        weight_map += (class_mask*class_weight)#/total_amount

    return weight_map
RadMC3DInterface.py 文件源码 项目:yt_astro_analysis 作者: yt-project 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, ds, max_level=2):
        self.max_level = max_level
        self.cell_count = 0
        self.layers = []
        self.domain_dimensions = ds.domain_dimensions
        self.domain_left_edge = ds.domain_left_edge
        self.domain_right_edge = ds.domain_right_edge
        self.grid_filename = "amr_grid.inp"
        self.ds = ds

        base_layer = RadMC3DLayer(0, None, 0,
                                  self.domain_left_edge,
                                  self.domain_right_edge,
                                  self.domain_dimensions)

        self.layers.append(base_layer)
        self.cell_count += np.product(ds.domain_dimensions)

        sorted_grids = sorted(ds.index.grids, key=lambda x: x.Level)
        for grid in sorted_grids:
            if grid.Level <= self.max_level:
                self._add_grid_to_layers(grid)
test_core.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_addsumprod(self):
        # Tests add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        assert_equal(np.add.reduce(x), add.reduce(x))
        assert_equal(np.add.accumulate(x), add.accumulate(x))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(np.sum(x, axis=0), sum(x, axis=0))
        assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
        assert_equal(np.sum(x, 0), sum(x, 0))
        assert_equal(np.product(x, axis=0), product(x, axis=0))
        assert_equal(np.product(x, 0), product(x, 0))
        assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
        s = (3, 4)
        x.shape = y.shape = xm.shape = ym.shape = s
        if len(s) > 1:
            assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
            assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
            assert_equal(np.sum(x, 1), sum(x, 1))
            assert_equal(np.product(x, 1), product(x, 1))
test_old_ma.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_testAddSumProd(self):
        # Test add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
        self.assertTrue(eq(np.add.reduce(x), add.reduce(x)))
        self.assertTrue(eq(np.add.accumulate(x), add.accumulate(x)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(4, sum(array(4), axis=0)))
        self.assertTrue(eq(np.sum(x, axis=0), sum(x, axis=0)))
        self.assertTrue(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
        self.assertTrue(eq(np.sum(x, 0), sum(x, 0)))
        self.assertTrue(eq(np.product(x, axis=0), product(x, axis=0)))
        self.assertTrue(eq(np.product(x, 0), product(x, 0)))
        self.assertTrue(eq(np.product(filled(xm, 1), axis=0),
                           product(xm, axis=0)))
        if len(s) > 1:
            self.assertTrue(eq(np.concatenate((x, y), 1),
                               concatenate((xm, ym), 1)))
            self.assertTrue(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
            self.assertTrue(eq(np.sum(x, 1), sum(x, 1)))
            self.assertTrue(eq(np.product(x, 1), product(x, 1)))
run.py 文件源码 项目:opminreplicability 作者: epochx 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __iter__(self):
        """Iterate over the points in the grid.

        Returns
        -------
        params : iterator over dict of string to any
            Yields dictionaries mapping each estimator parameter to one of its
            allowed values.
        """
        for p in self.param_grid:
            # Always sort the keys of a dictionary, for reproducibility
            items = sorted(p.items())
            if not items:
                yield {}
            else:
                keys, values = zip(*items)
                for v in product(*values):
                    params = dict(zip(keys, v))
                    yield params
bounding.py 文件源码 项目:dynesty 作者: joshspeagle 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def make_eigvals_positive(am, targetprod):
    """For the symmetric square matrix `am`, increase any zero eigenvalues
    such that the total product of eigenvalues is greater or equal to
    `targetprod`. Returns a (possibly) new, non-singular matrix."""

    w, v = linalg.eigh(am)  # use eigh since a is symmetric
    mask = w < 1.e-10
    if np.any(mask):
        nzprod = np.product(w[~mask])  # product of nonzero eigenvalues
        nzeros = mask.sum()  # number of zero eigenvalues
        new_val = max(1.e-10, (targetprod / nzprod) ** (1. / nzeros))
        w[mask] = new_val  # adjust zero eigvals
        am_new = np.dot(np.dot(v, np.diag(w)), linalg.inv(v))  # re-form cov
    else:
        am_new = am

    return am_new
test_core.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_addsumprod(self):
        # Tests add, sum, product.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        assert_equal(np.add.reduce(x), add.reduce(x))
        assert_equal(np.add.accumulate(x), add.accumulate(x))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(4, sum(array(4), axis=0))
        assert_equal(np.sum(x, axis=0), sum(x, axis=0))
        assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
        assert_equal(np.sum(x, 0), sum(x, 0))
        assert_equal(np.product(x, axis=0), product(x, axis=0))
        assert_equal(np.product(x, 0), product(x, 0))
        assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
        s = (3, 4)
        x.shape = y.shape = xm.shape = ym.shape = s
        if len(s) > 1:
            assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
            assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
            assert_equal(np.sum(x, 1), sum(x, 1))
            assert_equal(np.product(x, 1), product(x, 1))


问题


面经


文章

微信
公众号

扫码关注公众号