python类around()的实例源码

convert_data.py 文件源码 项目:aapm_thoracic_challenge 作者: xf4j 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_labels(contours, shape, slices):
    z = [np.around(s.ImagePositionPatient[2], 1) for s in slices]
    pos_r = slices[0].ImagePositionPatient[1]
    spacing_r = slices[0].PixelSpacing[1]
    pos_c = slices[0].ImagePositionPatient[0]
    spacing_c = slices[0].PixelSpacing[0]

    label_map = np.zeros(shape, dtype=np.float32)
    for con in contours:
        num = ROI_ORDER.index(con['name']) + 1
        for c in con['contours']:
            nodes = np.array(c).reshape((-1, 3))
            assert np.amax(np.abs(np.diff(nodes[:, 2]))) == 0
            z_index = z.index(np.around(nodes[0, 2], 1))
            r = (nodes[:, 1] - pos_r) / spacing_r
            c = (nodes[:, 0] - pos_c) / spacing_c
            rr, cc = polygon(r, c)
            label_map[z_index, rr, cc] = num

    return label_map
mip_sim.py 文件源码 项目:demos 作者: jnez71 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def ani_update(arg, ii=[0]):

    i = ii[0]  # don't ask...

    if np.isclose(t_arr[i], np.around(t_arr[i], 1)):
        fig2.suptitle('Evolution (Time: {})'.format(t_arr[i]), fontsize=24)

    graphic_floor[0].set_data([-floor_lim*np.cos(incline_history[i]) + radius*np.sin(incline_history[i]), floor_lim*np.cos(incline_history[i]) + radius*np.sin(incline_history[i])], [-floor_lim*np.sin(incline_history[i])-radius*np.cos(incline_history[i]), floor_lim*np.sin(incline_history[i])-radius*np.cos(incline_history[i])])
    graphic_wheel.center = (x_history[i], y_history[i])
    graphic_ind[0].set_data([x_history[i], x_history[i] + radius*np.sin(w_history[i])],
                            [y_history[i], y_history[i] + radius*np.cos(w_history[i])])
    graphic_pend[0].set_data([x_history[i], x_history[i] - cw_to_cm[1]*np.sin(q_history[i, 2])],
                             [y_history[i], y_history[i] + cw_to_cm[1]*np.cos(q_history[i, 2])])
    graphic_dist[0].set_data([x_history[i] - cw_to_cm[1]*np.sin(q_history[i, 2]), x_history[i] - cw_to_cm[1]*np.sin(q_history[i, 2]) - pscale*p_history[i]*np.cos(q_history[i, 2])],
                             [y_history[i] + cw_to_cm[1]*np.cos(q_history[i, 2]), y_history[i] + cw_to_cm[1]*np.cos(q_history[i, 2]) - pscale*p_history[i]*np.sin(q_history[i, 2])])

    ii[0] += int(1 / (timestep * framerate))
    if ii[0] >= len(t_arr):
        print("Resetting animation!")
        ii[0] = 0

    return [graphic_floor, graphic_wheel, graphic_ind, graphic_pend, graphic_dist]

# Run animation
atlas.py 文件源码 项目:cpsc415 作者: WheezePuppet 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def gen_adj_mat(longs, lats, prob_edge=.2,
                        additional_length=lambda: np.random.exponential(20,1)):
    '''Get an adjacency matrix for the cities whose longitudes and latitudes
    are passed. Each entry will either be a number somewhat greater than the
    crow-flies distance between the two cities (with probability prob_edge),
    or math.inf. The matrix will consist of floats, and be symmetric. The
    diagonal will be all zeroes. The "somewhat greater" is controlled by the
    additional_length parameter, a function returning a random amount.'''

    # Generate full nxn Bernoulli's, even though we'll only use the upper
    # triangle.
    edges = np.random.binomial(1, prob_edge, size=(len(longs),len(longs)))
    am = np.zeros((len(longs),len(longs)))
    for i in range(len(longs)):
        for j in range(len(longs)):
            if i==j:
                am[i,i] = 0
            elif i < j:
                if edges[i,j] == 1:
                    am[i,j] = (math.hypot(longs[i]-longs[j],lats[i]-lats[j])
                        + additional_length())
                    am[j,i] = am[i,j]
                else:
                    am[i,j] = am[j,i] = math.inf
    return np.around(am,1)
grid.py 文件源码 项目:pysheds 作者: mdbartos 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def bbox_indices(self, bbox, shape, precision=7):
        """
        Return row and column coordinates of a bounding box at a
        given cellsize.

        Parameters
        ----------
        bbox : tuple of floats or ints (length 4)
               bbox of new data.
        shape : tuple of ints (length 2)
                The shape of the 2D array (rows, columns).
        precision : int
                    Precision to use when matching geographic coordinates.
        """
        rows = np.around(np.linspace(bbox[1], bbox[3],
               shape[0], endpoint=False)[::-1], precision)
        cols = np.around(np.linspace(bbox[0], bbox[2],
               shape[1], endpoint=False), precision)
        return rows, cols
fromnumeric.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def round_(a, decimals=0, out=None):
    """
    Round an array to the given number of decimals.

    Refer to `around` for full documentation.

    See Also
    --------
    around : equivalent function

    """
    try:
        round = a.round
    except AttributeError:
        return _wrapit(a, 'round', decimals, out)
    return round(decimals, out)
scaffold.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def get_cell(self):

        # from fractions import Fraction

        marr = np.array(self._matrix, dtype=np.float64).reshape((3, 3))
        g_arr = self._sites_grid.to_array()
        d = self.depth
        w = self.width
        l = self.length

        arr_bas = marr*np.array([d, w, l], dtype=np.int).reshape((3, 1))
        grid_position = np.array([p for p in CStru._yield_position(d, w, l)])
        frac = np.array([1/d, 1/w, 1/l], dtype=np.float64).reshape((1, 3))
        # round_frac = np.around(frac, decimals=22)
        arr_pos = grid_position * frac
        arr_num = np.array([i for i in g_arr.flat])

        return (arr_bas, arr_pos, arr_num)
scaffold.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def _get_new_id_seq(pos, numbers):
        """
        A helper function to produce the new sequence of the transformed
        structure. Algs is sort the position back to init and use the index
        to sort numbers.
        """
        # transfer the atom position into >=0 and <=1
        pos = np.around(pos, decimals=3)
        func_tofrac = np.vectorize(lambda x: round((x % 1), 3))
        o_pos = func_tofrac(pos)
        # round_o_pos = np.around(o_pos, decimals=3)
        # z, y, x = round_o_pos[:, 2], round_o_pos[:, 1], round_o_pos[:, 0]
        z, y, x = o_pos[:, 2], o_pos[:, 1], o_pos[:, 0]
        inds = np.lexsort((z, y, x))

        return inds
buckyball.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _get_new_id_seq(pos, numbers):
        """
        A helper function to produce the new sequence of the transformed 
        structure. Algs is sort the position back to init and use the index
        to sort numbers.
        """
        # transfer the atom position into >=0 and <=1
        pos = np.around(pos, decimals=5)
        func_tofrac = np.vectorize(lambda x: round((x % 1), 3))
        o_pos = func_tofrac(pos)
        # round_o_pos = np.around(o_pos, decimals=3)
        # z, y, x = round_o_pos[:, 2], round_o_pos[:, 1], round_o_pos[:, 0]
        z, y, x = o_pos[:, 2], o_pos[:, 1], o_pos[:, 0]
        inds = np.lexsort((z, y, x))

        return inds
yaml.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, gcell):
        self.lattice = np.around(gcell.lattice, decimals=6)
        self.positions = np.around(gcell.positions, decimals=6)
        self.numbers = gcell.numbers

        atoms_name_list = list(map(lambda x: Specie.to_name(x),
                                   list(self.numbers)))
        d = Counter(atoms_name_list)
        ordered_atoms = OrderedDict(sorted(d.items(),
                                           key=lambda x: Specie(x[0]).Z))
        # remove Ghostatoms
        if 'G' in ordered_atoms:
            del ordered_atoms['G']

        self.comment = ''.join(['{}{}'.format(k, v)
                               for k, v in ordered_atoms.items()])
reward_funcs.py 文件源码 项目:rl_trading 作者: ucaiado 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def _pnl_pos(self, e, s, a, pnl, inputs):
        '''
        Return the reward based on PnL from the last step marked to the
        mid-price of the instruments traded

        :param e: Environment object. Environment where the agent operates
        :param a: Agent object. the agent that will perform the action
        :param s: dictionary. The inputs from environment to the agent
        :param pnl: float. The current pnl of the agent
        :param inputs: dictionary. The inputs from environment to the agent
        '''
        reward = self._pnl(e, s, a, pnl, inputs)
        s_main = e.s_main_intrument
        if not a.logged_action:
            return reward
        f_penalty = abs(e.agent_states[a][s_main]['Position']) * 0.02
        f_penalty += abs(np.around(a.log_info['duration'])) * 0.30
        return reward - f_penalty
stabilizer.py 文件源码 项目:360-stabilizer 作者: MateusZitelli 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def fixOffset(self, offset, img):
    size = img.shape
    finalImg = np.ndarray(size)
    indices = np.indices((self.videoSize[0],self.videoSize[1])).swapaxes(0,2).swapaxes(0,1)
    indices = np.around(indices, decimals=1)
    indices.shape = (self.videoSize[1] * self.videoSize[0], 2)
    phi = 2 * np.arctan(np.exp(indices[:, 1] / self.videoSize[1])) - 1/2 * np.pi - offset[0]
    lamb = indices[:, 0] - offset[1]
    x = lamb
    y = np.log(np.tan(np.pi / 4 + 1/2 * phi)) * self.videoSize[1]
    finalIdx = np.ndarray((self.videoSize[1] * self.videoSize[0], 2))
    finalIdx = np.around(finalIdx, decimals=1).astype(int)
    finalIdx[:, 1] = y % self.videoSize[1]
    finalIdx[:, 0] = x % self.videoSize[0]
    finalImg[indices[:,1], indices[:,0]] = img[finalIdx[:,1], finalIdx[:,0]]
    return finalImg
imresize.py 文件源码 项目:matlab_imresize 作者: fatheral 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def imresizemex(inimg, weights, indices, dim):
    in_shape = inimg.shape
    w_shape = weights.shape
    out_shape = list(in_shape)
    out_shape[dim] = w_shape[0]
    outimg = np.zeros(out_shape)
    if dim == 0:
        for i_img in range(in_shape[1]):
            for i_w in range(w_shape[0]):
                w = weights[i_w, :]
                ind = indices[i_w, :]
                im_slice = inimg[ind, i_img].astype(np.float64)
                outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
    elif dim == 1:
        for i_img in range(in_shape[0]):
            for i_w in range(w_shape[0]):
                w = weights[i_w, :]
                ind = indices[i_w, :]
                im_slice = inimg[i_img, ind].astype(np.float64)
                outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)        
    if inimg.dtype == np.uint8:
        outimg = np.clip(outimg, 0, 255)
        return np.around(outimg).astype(np.uint8)
    else:
        return outimg
convolutional_gridding.py 文件源码 项目:algorithm-reference-library 作者: SKA-ScienceDataProcessor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def frac_coord(npixel, kernel_oversampling, p):
    """ Compute whole and fractional parts of coordinates, rounded to
    kernel_oversampling-th fraction of pixel size

    The fractional values are rounded to nearest 1/kernel_oversampling pixel value. At
    fractional values greater than (kernel_oversampling-0.5)/kernel_oversampling coordinates are
    rounded to next integer index.

    :param npixel: Number of pixels in total
    :param kernel_oversampling: Fractional values to round to
    :param p: Coordinate in range [-.5,.5[
    """
    assert numpy.array(p >= -0.5).all() and numpy.array(
        p < 0.5).all(), "Cellsize is too large: uv overflows grid uv= %s" % str(p)
    x = npixel // 2 + p * npixel
    flx = numpy.floor(x + 0.5 / kernel_oversampling)
    fracx = numpy.around((x - flx) * kernel_oversampling)
    return flx.astype(int), fracx.astype(int)
test_logistic_regression.py 文件源码 项目:orange3-educational 作者: biolab 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_optimized(self):
        """
        Test if optimized works well
        """
        lr = self.logistic_regression

        lr.set_data(self.iris)
        op_theta = lr.optimized()
        self.assertEqual(len(op_theta), 4)

        # check if really minimal, function is monotonic so everywhere around
        # j should be higher
        self.assertLessEqual(
            lr.j(op_theta), lr.j(op_theta + np.array([1, 0, 0, 0])))
        self.assertLessEqual(
            lr.j(op_theta), lr.j(op_theta + np.array([0, 1, 0, 0])))
        self.assertLessEqual(
            lr.j(op_theta), lr.j(op_theta + np.array([0, 0, 1, 0])))
        self.assertLessEqual(
            lr.j(op_theta), lr.j(op_theta + np.array([0, 0, 0, 1])))
demo_boat_advanced.py 文件源码 项目:lqRRT 作者: jnez71 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def ani_update(arg, ii=[0]):

    i = ii[0]  # don't ask...

    if np.isclose(t_arr[i], np.around(t_arr[i], 1)):
        fig2.suptitle('Evolution (Time: {})'.format(t_arr[i]), fontsize=24)

    graphic_robot_1.center = ((x_history[i, 0]+td*np.cos(x_history[i, 2]), x_history[i, 1]+td*np.sin(x_history[i, 2])))
    graphic_robot_2.center = ((x_history[i, 0], x_history[i, 1]))
    graphic_robot_3.center = ((x_history[i, 0]-td*np.cos(x_history[i, 2]), x_history[i, 1]-td*np.sin(x_history[i, 2])))

    ii[0] += int(1 / (dt * framerate))
    if ii[0] >= len(t_arr):
        print("Resetting animation!")
        ii[0] = 0

    return None

# Run animation
demo_boat_intermediate.py 文件源码 项目:lqRRT 作者: jnez71 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def ani_update(arg, ii=[0]):

    i = ii[0]  # don't ask...

    if np.isclose(t_arr[i], np.around(t_arr[i], 1)):
        fig2.suptitle('Evolution (Time: {})'.format(t_arr[i]), fontsize=24)

    graphic_robot_1.center = ((x_history[i, 0]+td*np.cos(x_history[i, 2]), x_history[i, 1]+td*np.sin(x_history[i, 2])))
    graphic_robot_2.center = ((x_history[i, 0], x_history[i, 1]))
    graphic_robot_3.center = ((x_history[i, 0]-td*np.cos(x_history[i, 2]), x_history[i, 1]-td*np.sin(x_history[i, 2])))

    ii[0] += int(1 / (dt * framerate))
    if ii[0] >= len(t_arr):
        print("Resetting animation!")
        ii[0] = 0

    return None

# Run animation
demo_car.py 文件源码 项目:lqRRT 作者: jnez71 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def ani_update(arg, ii=[0]):

    i = ii[0]  # don't ask...

    if np.isclose(t_arr[i], np.around(t_arr[i], 1)):
        fig2.suptitle('Evolution (Time: {})'.format(t_arr[i]), fontsize=24)

    graphic_robot_1.center = ((x_history[i, 0]+td*np.cos(x_history[i, 2]), x_history[i, 1]+td*np.sin(x_history[i, 2])))
    graphic_robot_2.center = ((x_history[i, 0], x_history[i, 1]))
    graphic_robot_3.center = ((x_history[i, 0]-td*np.cos(x_history[i, 2]), x_history[i, 1]-td*np.sin(x_history[i, 2])))

    ii[0] += int(1 / (dt * framerate))
    if ii[0] >= len(t_arr):
        print("Resetting animation!")
        ii[0] = 0

    return None

# Run animation
demo_boat_novice.py 文件源码 项目:lqRRT 作者: jnez71 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def ani_update(arg, ii=[0]):

    i = ii[0]  # don't ask...

    if np.isclose(t_arr[i], np.around(t_arr[i], 1)):
        fig2.suptitle('Evolution (Time: {})'.format(t_arr[i]), fontsize=24)

    graphic_robot_1.center = ((x_history[i, 0]+td*np.cos(x_history[i, 2]), x_history[i, 1]+td*np.sin(x_history[i, 2])))
    graphic_robot_2.center = ((x_history[i, 0], x_history[i, 1]))
    graphic_robot_3.center = ((x_history[i, 0]-td*np.cos(x_history[i, 2]), x_history[i, 1]-td*np.sin(x_history[i, 2])))

    ii[0] += int(1 / (dt * framerate))
    if ii[0] >= len(t_arr):
        print("Resetting animation!")
        ii[0] = 0

    return None

# Run animation
demo_pendulum.py 文件源码 项目:lqRRT 作者: jnez71 项目源码 文件源码 阅读 82 收藏 0 点赞 0 评论 0
def update(arg, ii=[0]):

    i = ii[0]  # don't ask...

    if np.isclose(t_arr[i], np.around(t_arr[i], 1)):
        fig3.suptitle('Evolution (Time: {})'.format(t_arr[i]), fontsize=24)

    link1[0].set_data([0, elb_history[i, 0]], [0, elb_history[i, 1]])
    link2[0].set_data([elb_history[i, 0], x_history[i, 0]], [elb_history[i, 1], x_history[i, 1]])
    end.set_offsets((x_history[i, 0], x_history[i, 1]))
    elb.set_offsets((elb_history[i, 0], elb_history[i, 1]))

    ii[0] += int(1 / (dt * framerate))
    if ii[0] >= len(t_arr):
        print("Resetting animation!")
        ii[0] = 0

    return [link1, link2, end, elb]

# Run animation
test_finetuning.py 文件源码 项目:DeepMoji 作者: bfelbo 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_encode_texts():
    """ Text encoding is stable.
    """

    TEST_SENTENCES = [u'I love mom\'s cooking',
                      u'I love how you never reply back..',
                      u'I love cruising with my homies',
                      u'I love messing with yo mind!!',
                      u'I love you and now you\'re just gone..',
                      u'This is shit',
                      u'This is the shit']

    maxlen = 30
    batch_size = 32

    with open(VOCAB_PATH, 'r') as f:
        vocabulary = json.load(f)
    st = SentenceTokenizer(vocabulary, maxlen)
    tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)

    model = deepmoji_feature_encoding(maxlen, PRETRAINED_PATH)

    encoding = model.predict(tokenized)
    avg_across_sentences = np.around(np.mean(encoding, axis=0)[:5], 3)
    assert np.allclose(avg_across_sentences, np.array([-0.023, 0.021, -0.037, -0.001, -0.005]))
myImputer.py 文件源码 项目:CIKM2017 作者: heliarmk 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def myImputer(kernel,sample):
    kernelSize = kernel.shape[0];
    vectorSize = sample.shape[3];

    for fIndex in range(0,int(sample.shape[0])):
        for sIndex in range(0,int(sample.shape[1])):
            sslice = sample[fIndex][sIndex]
            #find the index of -1
            [x,y] = np.where(sslice == -1)
            #change -1 to 0
            sslice[sslice == -1] = 0
            if x.size == 0:
                continue
            #broaden the vector 
            tempVectorH = np.zeros([int((kernelSize-1)/2),vectorSize])
            tempVectorV = np.zeros([vectorSize-1+kernelSize,int((kernelSize-1)/2)])
            tempSlice = np.vstack((tempVectorH,sslice,tempVectorH))
            tempSlice = np.hstack((tempVectorV,tempSlice,tempVectorV))

            zeroSlice = np.zeros(sslice.shape);
            for k in range(len(x)):
                subSlice = tempSlice[x[k]:x[k]+kernelSize,y[k]:y[k]+kernelSize]
                imputerValue = np.sum(subSlice*kernel)
                zeroSlice[x[k],y[k]] = np.around(imputerValue)
            sslice += zeroSlice.astype("int32")
fromnumeric.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def round_(a, decimals=0, out=None):
    """
    Round an array to the given number of decimals.

    Refer to `around` for full documentation.

    See Also
    --------
    around : equivalent function

    """
    try:
        round = a.round
    except AttributeError:
        return _wrapit(a, 'round', decimals, out)
    return round(decimals, out)
maps.py 文件源码 项目:MOSPAT 作者: CR2MOS 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def prepare_basemap(min_lat, min_lon, max_lat, max_lon, delta_lat, delta_lon):
    """

    :param min_lat: float 
    :param min_lon: float
    :param max_lat: float
    :param max_lon: float
    :param delta_lat: float
    :param delta_lon: float
    :return: A Basemap instance
    """
    m = Basemap(projection='cyl', llcrnrlat=min_lat, urcrnrlat=max_lat, urcrnrlon=max_lon,
                llcrnrlon=min_lon, resolution='l')
    m.drawcountries()
    m.drawcoastlines()
    m.drawparallels(np.arange(np.around(min_lat, 1), np.around(max_lat, 1), -round(delta_lat) / 5.0),
                    labels=[1, 0, 0, 0])
    m.drawmeridians(np.arange(np.around(min_lon, 1), np.around(max_lon, 1), -round(delta_lon) / 5.0),
                    labels=[0, 0, 0, 1])
    return m
galaxyperlin.py 文件源码 项目:pythonprograms 作者: ElsaMJohnson 项目源码 文件源码 阅读 114 收藏 0 点赞 0 评论 0
def svimg(totarr):
    #print it out:
    x,y=totarr.shape
    vl = np.around(totarr.flatten(),5)#round to 5 digits
    xx = np.repeat(np.arange(x),x)+1
    yy = np.tile(np.arange(y),y)+1
    big =np.column_stack((xx,yy,vl))
    np.savetxt("noisyimage.txt",big,fmt=('%4.1f','%4.1f','%10.5f'))
    ##Add this if you want to
    ##read it out to make sure it works
    ##Otherwise slows down routine.
    #row,col,data=np.loadtxt("noisyimage.txt",unpack=True)
    #rsize = int(max(row))
    #csize = int(max(col))
    #data=np.array(data).reshape(rsize,csize)
#   plt.imshow(data, interpolation='None',cmap=plt.cm.Greys_r)
malib.py 文件源码 项目:pygeotools 作者: dshean 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def contour_edges(a):
    import matplotlib.pyplot as plt
    a = checkma(a)
    #Contour nodata value
    levels = [a.fill_value]
    #kw = {'antialiased':True, 'colors':'r', 'linestyles':'-'}
    kw = {'antialiased':True}
    #Generate contours around nodata
    cs = plt.contour(a.filled(), levels, **kw)
    #This returns a list of numpy arrays
    #allpts = np.vstack(cs.allsegs[0])
    #Extract paths
    p = cs.collections[0].get_paths()
    #Sort by number of vertices in each path
    p_len = [i.vertices.shape[0] for i in p]
    p_sort = [x for (y,x) in sorted(zip(p_len,p), reverse=True)]    
    #cp = p[0].make_compound_path(*p)
    return p_sort

#Brute force search for edges of valid data
agent_mjc.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def save_goal_image(self, traj):
        rounded = np.around(traj.score, decimals=2)
        best_score = np.min(rounded)
        for i in range(traj.score.shape[0]):
            if rounded[i] == best_score:
                first_best_index = i
                break

        print 'best_score', best_score
        print 'allscores', traj.score
        print 'goal index: ', first_best_index

        goalimage = traj._sample_images[first_best_index]
        # goalstate = traj.X_Xdot_full[i]
        img = Image.fromarray(goalimage)

        cPickle.dump([], open(self._hyperparams['save_goal_image'] + '.pkl', 'wb'))
        img.save(self._hyperparams['save_goal_image'] + '.png',)
predicting.py 文件源码 项目:imagenet_models_flask 作者: alesolano 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def evaluate_checkpoints(self, filename):
        # Load image
        with open(UPLOAD_FOLDER + '/' + filename, 'rb') as f:
            image_string = f.read()

        # Session
        with tf.Session() as sess:
            # Restore variables values
            self.saver.restore(sess, './models/'+self.loaded_model_name+'/model.ckpt')

            prob_values = sess.run(self.probs, feed_dict={
                self.input_image_string: image_string
                })

            pred_idx = prob_values[0].argsort()[-5:][::-1]
            pred_class = self.classes[pred_idx - 1] # from 1001 to 1000 classes
            pred_score = np.around(100*prob_values[0][pred_idx], decimals=2) # two decimals

            return list(pred_class), list(pred_score)
predicting.py 文件源码 项目:imagenet_models_flask 作者: alesolano 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def evaluate_frozen(self, filename):
        # Load image
        with open(UPLOAD_FOLDER + '/' + filename, 'rb') as f:
            image_string = f.read()

        # Session
        with tf.Session() as sess:
            prob_values = sess.run(self.probs, feed_dict={
                self.input_image_string: image_string
                })

            pred_idx = prob_values[0].argsort()[-5:][::-1]
            pred_class = self.classes[pred_idx - 1] # from 1001 to 1000 classes
            pred_score = np.around(100*prob_values[0][pred_idx], decimals=2) # two decimals

            return list(pred_class), list(pred_score)
cute_plot.py 文件源码 项目:cellcomplex 作者: VirtualPlants 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def histo_plot(figure,X,color,xlabel="",ylabel="",cumul=False,bar=True,n_points=400,smooth_factor=0.1,spline_order=3,linewidth=3,alpha=1.0,label=""):
    if '%' in xlabel:
        magnitude = 100
        X_values = np.array(np.minimum(np.around(X),n_points+1),int)
    else:
        # magnitude = np.power(10,np.around(4*np.log10(X.mean()))/4+0.5)
        magnitude = np.power(10,np.around(4*np.log10(np.nanmean(X)+np.nanstd(X)+1e-7))/4+1)
        magnitude = np.around(magnitude,int(-np.log10(magnitude))+1)
        # print magnitude
        #magnitude = X.mean()+5.0*X.std()
        X_values = np.array(np.minimum(np.around(n_points*X[True-np.isnan(X)]/magnitude),n_points+1),int)
    X_histo = np.zeros(n_points+1,float)
    for x in np.linspace(0,n_points,n_points+1):
        X_histo[x] = nd.sum(np.ones_like(X_values,float),X_values,index=x)
        if '%' in ylabel:
            X_histo[x] /= X_values.size/100.0
        if cumul:
            X_histo[x] += X_histo[x-1]

    if bar:
        bar_plot(figure,np.linspace(0,magnitude,n_points+1),X_histo,np.array([1,1,1]),color,xlabel,ylabel,label=label)
    else:
        smooth_plot(figure,np.linspace(0,magnitude,n_points+1),X_histo,color,color,xlabel,ylabel,n_points=n_points,smooth_factor=smooth_factor,spline_order=spline_order,linewidth=linewidth,alpha=alpha,label=label)
fitness_model.py 文件源码 项目:augur 作者: nextstrain 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def make_pivots(start, stop, pivots_per_year=12, precision=2):
    """Makes an array of pivots (i.e., timepoints) between the given start and stop
    by the given pivots per year. The generated pivots are floating point values
    that are then rounded to the requested decimal precision.

    >>> list(make_pivots(2000.0, 2001.0, 5))
    [2000.0, 2000.25, 2000.5, 2000.75, 2001.0]
    """
    # Calculate number of pivots (i.e., months) in the requested interval.
    number_of_pivots = np.ceil((stop - start) * pivots_per_year)

    # Build an evenly-spaced closed interval (including the start and stop
    # points) based on the calculated number of pivots.
    return np.around(
        np.linspace(start, stop, number_of_pivots),
        precision
    )


问题


面经


文章

微信
公众号

扫码关注公众号