python类corrcoef()的实例源码

solar_corr.py 文件源码 项目:solar-correlation-map 作者: Zapf-Consulting 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def transform_to_positive_corrs(data, sun_idx):
    y_corr = np.corrcoef(data.T)
    positive = y_corr[sun_idx]
    positive = positive >= 0
    return positive
test_deconvolution.py 文件源码 项目:OASIS 作者: j-friedrich 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def AR1(constrained=False):
    g = .95
    sn = .3
    y, c, s = [a[0] for a in gen_data([g], sn, N=1)]
    result = constrained_oasisAR1(y, g, sn) if constrained else oasisAR1(y, g, lam=2.4)
    result_foopsi = constrained_foopsi(y, [g], sn) if constrained else foopsi(y, [g], lam=2.4)
    npt.assert_allclose(np.corrcoef(result[0], result_foopsi[0])[0, 1], 1)
    npt.assert_allclose(np.corrcoef(result[1], result_foopsi[1])[0, 1], 1)
    npt.assert_allclose(np.corrcoef(result[0], c)[0, 1], 1, .03)
    npt.assert_allclose(np.corrcoef(result[1], s)[0, 1], 1, .2)
test_deconvolution.py 文件源码 项目:OASIS 作者: j-friedrich 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def AR2(constrained=False):
    g = [1.7, -.712]
    sn = .3
    y, c, s = [a[0] for a in gen_data(g, sn, N=1, seed=3)]
    result = constrained_onnlsAR2(y, g, sn) if constrained else onnls(y, g, lam=25)
    result_foopsi = constrained_foopsi(y, g, sn) if constrained else foopsi(y, g, lam=25)
    npt.assert_allclose(np.corrcoef(result[0], result_foopsi[0])[0, 1], 1, 1e-3)
    npt.assert_allclose(np.corrcoef(result[1], result_foopsi[1])[0, 1], 1, 1e-2)
    npt.assert_allclose(np.corrcoef(result[0], c)[0, 1], 1, .03)
    npt.assert_allclose(np.corrcoef(result[1], s)[0, 1], 1, .2)
    result2 = constrained_oasisAR2(y, g[0], g[1], sn) if constrained \
        else oasisAR2(y, g[0], g[1], lam=25)
    npt.assert_allclose(np.corrcoef(result2[0], c)[0, 1], 1, .03)
    npt.assert_allclose(np.corrcoef(result2[1], s)[0, 1], 1, .2)
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_non_array(self):
        assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]),
                            [[1., -1.], [-1.,  1.]])
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_simple(self):
        tgt1 = corrcoef(self.A)
        assert_almost_equal(tgt1, self.res1)
        assert_(np.all(np.abs(tgt1) <= 1.0))

        tgt2 = corrcoef(self.A, self.B)
        assert_almost_equal(tgt2, self.res2)
        assert_(np.all(np.abs(tgt2) <= 1.0))
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_ddof(self):
        # ddof raises DeprecationWarning
        with catch_warn_nfb():
            warnings.simplefilter("always")
            assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1)
            warnings.simplefilter("ignore")
            # ddof has no or negligible effect on the function
            assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1)
            assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2)
            assert_almost_equal(corrcoef(self.A, ddof=3), self.res1)
            assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2)
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_bias(self):
        # bias raises DeprecationWarning
        with catch_warn_nfb():
            warnings.simplefilter("always")
            assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0)
            assert_warns(DeprecationWarning, corrcoef, self.A, bias=0)
            warnings.simplefilter("ignore")
            # bias has no or negligible effect on the function
            assert_almost_equal(corrcoef(self.A, bias=1), self.res1)
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_complex(self):
        x = np.array([[1, 2, 3], [1j, 2j, 3j]])
        res = corrcoef(x)
        tgt = np.array([[1., -1.j], [1.j, 1.]])
        assert_allclose(res, tgt)
        assert_(np.all(np.abs(res) <= 1.0))
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_empty(self):
        with warnings.catch_warnings(record=True):
            warnings.simplefilter('always', RuntimeWarning)
            assert_array_equal(corrcoef(np.array([])), np.nan)
            assert_array_equal(corrcoef(np.array([]).reshape(0, 2)),
                               np.array([]).reshape(0, 0))
            assert_array_equal(corrcoef(np.array([]).reshape(2, 0)),
                               np.array([[np.nan, np.nan], [np.nan, np.nan]]))
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_extreme(self):
        x = [[1e-100, 1e100], [1e100, 1e-100]]
        with np.errstate(all='raise'):
            c = corrcoef(x)
        assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]]))
        assert_(np.all(np.abs(c) <= 1.0))
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_ddof(self):
        # ddof raises DeprecationWarning
        x, y = self.data, self.data2
        expected = np.corrcoef(x)
        expected2 = np.corrcoef(x, y)
        with catch_warn_mae():
            warnings.simplefilter("always")
            assert_warns(DeprecationWarning, corrcoef, x, ddof=-1)
            warnings.simplefilter("ignore")
            # ddof has no or negligible effect on the function
            assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0))
            assert_almost_equal(corrcoef(x, ddof=-1), expected)
            assert_almost_equal(corrcoef(x, y, ddof=-1), expected2)
            assert_almost_equal(corrcoef(x, ddof=3), expected)
            assert_almost_equal(corrcoef(x, y, ddof=3), expected2)
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_bias(self):
        x, y = self.data, self.data2
        expected = np.corrcoef(x)
        # bias raises DeprecationWarning
        with catch_warn_mae():
            warnings.simplefilter("always")
            assert_warns(DeprecationWarning, corrcoef, x, y, True, False)
            assert_warns(DeprecationWarning, corrcoef, x, y, True, True)
            assert_warns(DeprecationWarning, corrcoef, x, bias=False)
            warnings.simplefilter("ignore")
            # bias has no or negligible effect on the function
            assert_almost_equal(corrcoef(x, bias=1), expected)
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def test_1d_wo_missing(self):
        # Test cov on 1D variable w/o missing values
        x = self.data
        assert_almost_equal(np.corrcoef(x), corrcoef(x))
        assert_almost_equal(np.corrcoef(x, rowvar=False),
                            corrcoef(x, rowvar=False))
        with catch_warn_mae():
            warnings.simplefilter("ignore")
            assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
                                corrcoef(x, rowvar=False, bias=True))
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_1d_w_missing(self):
        # Test corrcoef 1 1D variable w/missing values
        x = self.data
        x[-1] = masked
        x -= x.mean()
        nx = x.compressed()
        assert_almost_equal(np.corrcoef(nx), corrcoef(x))
        assert_almost_equal(np.corrcoef(nx, rowvar=False),
                            corrcoef(x, rowvar=False))
        with catch_warn_mae():
            warnings.simplefilter("ignore")
            assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True),
                                corrcoef(x, rowvar=False, bias=True))
        try:
            corrcoef(x, allow_masked=False)
        except ValueError:
            pass
        # 2 1D variables w/ missing values
        nx = x[1:-1]
        assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
        assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
                            corrcoef(x, x[::-1], rowvar=False))
        with catch_warn_mae():
            warnings.simplefilter("ignore")
            # ddof and bias have no or negligible effect on the function
            assert_almost_equal(np.corrcoef(nx, nx[::-1]),
                                corrcoef(x, x[::-1], bias=1))
            assert_almost_equal(np.corrcoef(nx, nx[::-1]),
                                corrcoef(x, x[::-1], ddof=2))
math_util.py 文件源码 项目:baselines 作者: openai 项目源码 文件源码 阅读 61 收藏 0 点赞 0 评论 0
def ncc(ypred, y):
    return np.corrcoef(ypred, y)[1,0]
test_prioritized.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_convergence(self):
        size = 100

        buf = prioritized.PrioritizedBuffer(capacity=size)
        for x in range(size):
            buf.append(x)

        priority_init = list(range(size))
        random.shuffle(priority_init)
        count_sampled = [0] * size

        def priority(x, n):
            return priority_init[x] + 1 / count_sampled[x]

        count_none = 0
        for t in range(200):
            sampled, probabilities = buf.sample(16)
            if all([p is not None for p in probabilities]):
                priority_old = [priority(x, count_sampled[x]) for x in sampled]
                # assert: probabilities \propto priority_old
                qs = [x / y for x, y in zip(probabilities, priority_old)]
                for q in qs:
                    self.assertAlmostEqual(q, qs[0])
            else:
                count_none += 1
            for x in sampled:
                count_sampled[x] += 1
            priority_new = [priority(x, count_sampled[x]) for x in sampled]
            buf.set_last_priority(priority_new)

        for cnt in count_sampled:
            self.assertGreaterEqual(cnt, 1)
        self.assertLessEqual(count_none, size // 16 + 1)

        corr = np.corrcoef(np.array([priority_init, count_sampled]))[0, 1]
        self.assertGreater(corr, 0.8)
genre_searchlight_example.py 文件源码 项目:brainiak 作者: brainiak 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def corr2_coeff(AB,msk,myrad,bcast_var):
    if not np.all(msk):
        return None
    A,B = (AB[0], AB[1])
    A = A.reshape((-1,A.shape[-1]))
    B = B.reshape((-1,B.shape[-1]))
    corrAB = np.corrcoef(A.T,B.T)[16:,:16]
    classical_within = np.mean(corrAB[0:8,0:8])
    jazz_within = np.mean(corrAB[8:16,8:16])
    classJazz_between = np.mean(corrAB[8:16,0:8])
    jazzClass_between = np.mean(corrAB[0:8,8:16])
    within_genre = np.mean([classical_within,jazz_within])
    between_genre = np.mean([classJazz_between,jazzClass_between])
    diff = within_genre - between_genre
    return diff
compare_trace.py 文件源码 项目:pytomo3d 作者: computational-seismology 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def cross_correlation(data1, data2):
    """
    :param data1:
    :param data2:
    :return:
    """
    # correlation test
    corr_min = 1.0
    corr_mat = np.corrcoef(data1, data2)
    corr = np.min(corr_mat)
    corr_min = min(corr, corr_min)
    return corr_min
transforms.py 文件源码 项目:kaggle-seizure-prediction 作者: sics-lm 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def apply(self, data):
        return np.corrcoef(data)
metrics.py 文件源码 项目:xdesign 作者: tomography 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def compute_PCC(A, B, masks=None):
    """Computes the Pearson product-moment correlation coefficients (PCC) for
    the two images.

    Parameters
    -------------
    A,B : ndarray
        The two images to be compared
    masks : list of ndarrays, optional
        If supplied, the data under each mask is computed separately.

    Returns
    ----------------
    covariances : array, list of arrays
    """
    covariances = []
    if masks is None:
        data = np.vstack((np.ravel(A), np.ravel(B)))
        return np.corrcoef(data)

    for m in masks:
        weights = m[m > 0]
        masked_B = B[m > 0]
        masked_A = A[m > 0]
        data = np.vstack((masked_A, masked_B))
        # covariances.append(np.cov(data,aweights=weights))
        covariances.append(np.corrcoef(data))

    return covariances


问题


面经


文章

微信
公众号

扫码关注公众号