python类corrcoef()的实例源码

distance.py 文件源码 项目:ECoG-ClusterFlow 作者: sugeerth 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def get_dist_func(name):
    """

    Valid names:
        Euclidean
        Pearson

    """

    if name == 'Euclidean':

        if EUC_C_EXT_ENABLED:
            return euclidean.euclidean
        else:
            return euc

    elif name == 'Pearson':

        #FIXME: Until I write my own c-extension, this is as good as it gets.  And it's SLOW.
        return lambda x, y: 1 - numpy.corrcoef(x,y)[0][1] #Again, we normalise -1 to distant and 1 to close. corrcoef returns the correlation matrix.

    else:

        raise ValueError, 'No distance function named: %s' % name
inverse_covariance.py 文件源码 项目:skggm 作者: skggm 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _init_coefs(X, method='corrcoef'):
    if method == 'corrcoef':
        return np.corrcoef(X, rowvar=False), 1.0
    elif method == 'cov':
        init_cov = np.cov(X, rowvar=False)
        return init_cov, np.max(np.abs(np.triu(init_cov)))
    elif method == 'spearman':
        return spearman_correlation(X, rowvar=False), 1.0
    elif method == 'kendalltau':
        return kendalltau_correlation(X, rowvar=False), 1.0
    elif callable(method):
        return method(X)
    else:
        raise ValueError(
            ("initialize_method must be 'corrcoef' or 'cov', "
             "passed \'{}\' .".format(method))
        )
test_extras.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test corrcoef on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)

        test = corrcoef(x)
        control = np.corrcoef(x)
        assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
        with catch_warn_mae():
            warnings.simplefilter("ignore")
            # ddof and bias have no or negligible effect on the function
            assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
                                control[:-1, :-1])
test_basc.py 文件源码 项目:PyBASC 作者: AkiNikolaidis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_individual_stability_matrix():
    """
    Tests individual_stability_matrix method on three gaussian blobs.
    """
    import utils
    import numpy as np
    import scipy as sp
    desired = np.load(home + '/git_repo/PyBASC/tests/ism_test.npy')
    blobs = generate_blobs()
    ism = utils.individual_stability_matrix(blobs, 20, 3)
    #how to use test here?
#    np.corrcoef(ism.flatten(),desired.flatten())
#    np.testing.assert_equal(ism,desired)
#    
#    corr=np.array(sp.spatial.distance.cdist(ism, desired, metric = 'correlation'))
#    
    assert False
fig3.py 文件源码 项目:OASIS 作者: j-friedrich 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_trace(n=0, lg=False):
    plt.plot(trueC[n], c=col[2], clip_on=False, zorder=5, label='Truth')
    plt.plot(solution, c=col[0], clip_on=False, zorder=7, label='Estimate')
    plt.plot(y, c=col[7], alpha=.7, lw=1, clip_on=False, zorder=-10, label='Data')
    if lg:
        plt.legend(frameon=False, ncol=3, loc=(.1, .62), columnspacing=.8)
    spks = np.append(0, solution[1:] - g * solution[:-1])
    plt.text(800, 2.2, 'Correlation: %.3f' % (np.corrcoef(trueSpikes[n], spks)[0, 1]), size=24)
    plt.gca().set_xticklabels([])
    simpleaxis(plt.gca())
    plt.ylim(0, 2.85)
    plt.xlim(0, 1500)
    plt.yticks([0, 2], [0, 2])
    plt.xticks([300, 600, 900, 1200], ['', ''])


# init params
pleiopred_main.py 文件源码 项目:PleioPred 作者: yiminghu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def pred_accuracy(y_true, y_pred):
    y_true = sp.copy(y_true)
    if len(sp.unique(y_true))==2:
        print 'dichotomous trait, calculating AUC'
        y_min = y_true.min()
        y_max = y_true.max()
        if y_min!= 0 or y_max!=1:
            y_true[y_true==y_min]=0
            y_true[y_true==y_max]=1
        fpr, tpr, thresholds = metrics.roc_curve(y_true, y_pred)
        auc = metrics.auc(fpr, tpr)
        return auc
    else:
        print 'continuous trait, calculating COR'
        cor = sp.corrcoef(y_true,y_pred)[0,1]
        return cor
calculations.py 文件源码 项目:covar_me_app 作者: CovarMe 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def calculate_residual_correlation_matrix(returns):
    # find the market return constraining on the selected companies (first PCA)
    # regress each stock on that and find correlation of residuals
    returns_matrix = returns.as_matrix().transpose()
    covar_matrix = np.cov(returns_matrix)
    pca = decomposition.PCA(n_components=1)
    pca.fit(covar_matrix)
    X = pca.transform(covar_matrix)
    regr = linear_model.LinearRegression()
    dim = covar_matrix.shape[1]
    res = np.zeros(shape=(dim,dim))
    for x in range(0, dim):
        regr = linear_model.LinearRegression()
        regr = regr.fit(X, covar_matrix[:,x])
        res[:,x] = covar_matrix[:,x] - regr.predict(X)

    res_corr = np.corrcoef(res)
    return pd.DataFrame(res_corr, index = returns.columns, columns = returns.columns)
all_correlations.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def all_correlations_fast_no_scipy(y, X):
    '''
    Cs = all_correlations(y, X)

    Cs[i] = np.corrcoef(y, X[i])[0,1]
    '''
    X = np.asanyarray(X, float)
    y = np.asanyarray(y, float)
    xy = np.dot(X, y)
    y_ = y.mean()
    ys_ = y.std()
    x_ = X.mean(1)
    xs_ = X.std(1)
    n = float(len(y))
    ys_ += 1e-5  # Handle zeros in ys
    xs_ += 1e-5  # Handle zeros in x

    return (xy - x_ * y_ * n) / n / xs_ / ys_
test_learn_d_z.py 文件源码 项目:alphacsc 作者: alphacsc 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_learn_codes():
    """Test learning of codes."""
    thresh = 0.25

    X, ds, z = simulate_data(n_trials, n_times, n_times_atom, n_atoms)

    for solver in ('l_bfgs', 'ista', 'fista'):
        z_hat = update_z(X, ds, reg, n_times_atom, solver=solver,
                         solver_kwargs=dict(factr=1e11, max_iter=50))

        X_hat = construct_X(z_hat, ds)
        assert_true(np.corrcoef(X.ravel(), X_hat.ravel())[1, 1] > 0.99)
        assert_true(np.max(X - X_hat) < 0.1)

        # Find position of non-zero entries
        idx = np.ravel_multi_index(z[0].nonzero(), z[0].shape)
        loc_x, loc_y = np.where(z_hat[0] > thresh)
        # shift position by half the length of atom
        idx_hat = np.ravel_multi_index((loc_x, loc_y), z_hat[0].shape)
        # make sure that the positions are a subset of the positions
        # in the original z
        mask = np.in1d(idx_hat, idx)
        assert_equal(np.sum(mask), len(mask))
nanops.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_corr_func(method):
    if method in ['kendall', 'spearman']:
        from scipy.stats import kendalltau, spearmanr

    def _pearson(a, b):
        return np.corrcoef(a, b)[0, 1]

    def _kendall(a, b):
        rs = kendalltau(a, b)
        if isinstance(rs, tuple):
            return rs[0]
        return rs

    def _spearman(a, b):
        return spearmanr(a, b)[0]

    _cor_methods = {
        'pearson': _pearson,
        'kendall': _kendall,
        'spearman': _spearman
    }
    return _cor_methods[method]
test_extras.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test corrcoef on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)

        test = corrcoef(x)
        control = np.corrcoef(x)
        assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
        with catch_warn_mae():
            warnings.simplefilter("ignore")
            # ddof and bias have no or negligible effect on the function
            assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
                                control[:-1, :-1])
test_extras.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test corrcoef on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)

        test = corrcoef(x)
        control = np.corrcoef(x)
        assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
        with catch_warn_mae():
            warnings.simplefilter("ignore")
            # ddof and bias have no or negligible effect on the function
            assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
                                control[:-1, :-1])
pyembedding.py 文件源码 项目:pyembedding 作者: cobeylab 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def correlation_valid(x, y):
    invalid = numpy.logical_or(numpy.isnan(x), numpy.isnan(y))
    valid = numpy.logical_not(invalid)
    valid_count = valid.sum()

    if valid_count == 0:
        corr = float('nan')
        sd_x = float('nan')
        sd_y = float('nan')
    else:
        sd_x = numpy.std(x[valid])
        sd_y = numpy.std(y[valid])

        if sd_x == 0 and sd_y == 0:
            corr = 1.0
        elif sd_x == 0 or sd_y == 0:
            corr = 0.0
        else:
            corr = numpy.corrcoef(x[valid], y[valid])[0,1]

    return corr, valid_count, sd_x, sd_y
projection.py 文件源码 项目:pyembedding 作者: cobeylab 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def correlation_valid(x, y):
    invalid = numpy.logical_or(numpy.isnan(x), numpy.isnan(y))
    valid = numpy.logical_not(invalid)
    valid_count = valid.sum()

    if valid_count == 0:
        corr = float('nan')
        sd_x = float('nan')
        sd_y = float('nan')
    else:
        sd_x = numpy.std(x[valid])
        sd_y = numpy.std(y[valid])

        if sd_x == 0 and sd_y == 0:
            corr = 1.0
        elif sd_x == 0 or sd_y == 0:
            corr = 0.0
        else:
            corr = numpy.corrcoef(x[valid], y[valid])[0,1]

    return corr, valid_count, sd_x, sd_y
staNMF.py 文件源码 项目:staNMF 作者: greenelab 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def findcorrelation(self, A, B, k):
        '''
        Construct k by k matrix of Pearson product-moment correlation
        coefficients for every combination of two columns in A and B

        :param: A : first NMF solution matrix
        :param: B : second NMF solution matrix, of same dimensions as A
        :param: k : number of columns in each matrix A and B

        Return: numpy array of dimensions k by k, where array[a][b] is the
        correlation between column 'a' of X and column 'b'

        Usage:
        Called by instability()

        '''
        corrmatrix = []
        for a in range(k):
            for b in range(k):
                c = np.corrcoef(A[:, a], B[:, b])
                corrmatrix.append(c[0][1])

        return np.asarray(corrmatrix).reshape(k, k)
test_extras.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test corrcoef on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)

        test = corrcoef(x)
        control = np.corrcoef(x)
        assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
        with catch_warn_mae():
            warnings.simplefilter("ignore")
            # ddof and bias have no or negligible effect on the function
            assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
                                control[:-1, :-1])
utils.py 文件源码 项目:torchsample 作者: ncullen93 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def th_corrcoef(x):
    """
    mimics np.corrcoef
    """
    # calculate covariance matrix of rows
    mean_x = th.mean(x, 1)
    xm = x.sub(mean_x.expand_as(x))
    c = xm.mm(xm.t())
    c = c / (x.size(1) - 1)

    # normalize covariance matrix
    d = th.diag(c)
    stddev = th.pow(d, 0.5)
    c = c.div(stddev.expand_as(c))
    c = c.div(stddev.expand_as(c).t())

    # clamp between -1 and 1
    c = th.clamp(c, -1.0, 1.0)

    return c
chapter_10.py 文件源码 项目:python-machine-learning-book 作者: jeremyn 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def visualize_housing_data(df):
    sns.set(style='whitegrid', context='notebook')
    cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']

    sns.pairplot(df[cols], size=2.5)

    plt.show()

    correlation_matrix = np.corrcoef(df[cols].values.T)
    sns.set(font_scale=1.5)
    heatmap = sns.heatmap(
        correlation_matrix,
        cbar=True,
        annot=True,
        square=True,
        fmt='.2f',
        annot_kws={'size': 15},
        yticklabels=cols,
        xticklabels=cols,
    )

    plt.show()
test_extras.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_2d_with_missing(self):
        # Test corrcoef on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)

        test = corrcoef(x)
        control = np.corrcoef(x)
        assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, "bias and ddof have no effect")
            # ddof and bias have no or negligible effect on the function
            assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
                                control[:-1, :-1])
            assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
                                control[:-1, :-1])
test_utils.py 文件源码 项目:decoding_challenge_cortana_2016_3rd 作者: kingjr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_compute_corr():
    """Test Anscombe's Quartett
    """
    x = np.array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5])
    y = np.array([[8.04, 6.95, 7.58, 8.81, 8.33, 9.96,
                   7.24, 4.26, 10.84, 4.82, 5.68],
                  [9.14, 8.14, 8.74, 8.77, 9.26, 8.10,
                   6.13, 3.10, 9.13, 7.26, 4.74],
                  [7.46, 6.77, 12.74, 7.11, 7.81, 8.84,
                   6.08, 5.39, 8.15, 6.42, 5.73],
                  [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8],
                  [6.58, 5.76, 7.71, 8.84, 8.47, 7.04,
                   5.25, 12.50, 5.56, 7.91, 6.89]])

    r = compute_corr(x, y.T)
    r2 = np.array([np.corrcoef(x, y[i])[0, 1]
                   for i in range(len(y))])
    assert_allclose(r, r2)
    assert_raises(ValueError, compute_corr, [1, 2], [])
M01_covariances_correlations.py 文件源码 项目:MetaXcan 作者: hakyimlab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def buildCorrelationEntries(self, name, gene, weight_db_logic, snps_by_rsid):
        weights_in_gene = weight_db_logic.weights_by_gene[gene]
        rsids_from_genes = weights_in_gene.keys()

        #gather as much data as we can work on
        related_rsids, related_data = self.buildRelatedData(rsids_from_genes, snps_by_rsid, weights_in_gene)

        if len(related_rsids) == 0:
            return []

        self.updateFoundCorrelation(gene, name)

        #correlation matrix of related SNP's data
        array = numpy.array(related_data)
        cor = numpy.corrcoef(array)

        #translate into sql entries
        entries = self.buildMatrixOutputEntries(cor, rsids_from_genes, related_rsids, snps_by_rsid)
        if not len(entries):
            raise NameError("Couldn not build correlation entries for (%s,%s)" %(name,gene))
        return entries
testRegression.py 文件源码 项目:Machine_Learning_In_Action 作者: SunnyMarkLiu 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def testLocallyWeightedRegression():
    datasArr, valuessArr = loadDataSet('datasets/ex0.txt')
    m = np.shape(datasArr)[0]
    predictValues = np.zeros(m)
    for i in range(0, m):
        predictValues[i] = \
            locallyWeightedRegression(datasArr[i], datasArr, valuessArr, 0.01)

    # ??????
    xMat = np.matrix(datasArr)
    valueMat = np.matrix(valuessArr)
    plt.figure(figsize=(10, 10), facecolor="white")
    plt.subplot(111)
    plt.scatter(xMat[:, 1].flatten().A[0], valueMat.T.flatten().A[0])
    # ???????
    # ??????????
    sortedIndexs = xMat[:, 1].argsort(0)
    print "sortedIndexs:"
    print sortedIndexs
    sortedMat = xMat[sortedIndexs.flatten().A[0]]
    plt.plot(sortedMat[:, 1], predictValues[sortedIndexs], c='red', linewidth=2)
    plt.show()
    # ?????????????
    correlationCoefficients = np.corrcoef(predictValues, valueMat)
    print "?????", correlationCoefficients
stats.py 文件源码 项目:pastas 作者: pastas 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def rsq(self, tmin=None, tmax=None):
        """Correlation between observed and simulated series.

        Notes
        -----
        For the calculation of this statistic the corrcoef method from numpy
        is used.

        >>> np.corrcoef(sim, obs)[0, 1]

        Please refer to the Numpy Docs:
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef

        """
        sim = self.ml.simulate(tmin=tmin, tmax=tmax)
        obs = self.ml.observations(tmin=tmin, tmax=tmax)
        sim = sim[obs.index]  # Make sure to correlate the same in time.
        return np.corrcoef(sim, obs)[0, 1]
pca.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def PA(samples, variables):
    datasets = 5000
    eig_vals = []

    for i in range(datasets):
        data = np.random.standard_normal((variables, samples))
        cor_ = np.corrcoef(data)
        eig_vals.append(np.sort(np.linalg.eig(cor_)[0])[::-1])


    quantile = (np.round(np.percentile(eig_vals, 95.0, axis=0), 4))
    mean_ = (np.round(np.mean(eig_vals, axis=0), 4))
    return quantile
pca.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def PCAdo(block, name):
    cor_ = np.corrcoef(block.T)
    eig_vals, eig_vecs = np.linalg.eig(cor_)
    tot = sum(eig_vals)
    var_exp = [(i / tot) * 100 for i in sorted(eig_vals, reverse=True)]
    cum_var_exp = np.cumsum(var_exp)
    loadings = (eig_vecs * np.sqrt(eig_vals))

    eig_vals = np.sort(eig_vals)[::-1]
    print('Eigenvalues')
    print(eig_vals)
    print('Variance Explained')
    print(var_exp)
    print('Total Variance Explained')
    print(cum_var_exp)
    print('Loadings')
    print(abs(loadings[:, 0]))

    PAcorrect = PA(block.shape[0], block.shape[1])

    print('Parallel Analisys')
    pa = (eig_vals - (PAcorrect - 1))
    print(pa)

    print('Correlation Matrix')
    print(pd.DataFrame.corr(block))

    plt.plot(range(1,len(pa)+1), pa, '-o')
    plt.grid(True)
    plt.xlabel('Fatores')
    plt.ylabel('Componentes')

    plt.savefig('imgs/PCA' + name, bbox_inches='tight')
    plt.clf()
    plt.cla()
#    plt.show()
stat_utils.py 文件源码 项目:saapy 作者: ashapochka 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def pearson_r(data_1, data_2):
    return np.corrcoef(data_1, data_2)[0,1]
Distance.py 文件源码 项目:time_series_anomaly_detection 作者: massful 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def person_sim(cls, x, y):
        return 0.5 + 0.5 * np.corrcoef(x, y, rowvar=0)[0][1]
test_dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_pearson_r(data):
    x, y = data
    if np.allclose(x, x[0], atol=atol, equal_nan=True) or np.allclose(y, y[0], atol=atol, equal_nan=True):
        assert np.isnan(dcst.pearson_r(x, y))
    else:
        assert np.isclose(dcst.pearson_r(x, y), original.pearson_r(x, y))
        assert np.isclose(dcst.pearson_r(x, y), np.corrcoef(x, y)[0,1])
original.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def pearson_r(x, y):
    """Compute Pearson correlation coefficient between two arrays."""
    # Compute correlation matrix
    corr_mat = np.corrcoef(x, y)

    # Return entry [0,1]
    return corr_mat[0,1]
solar_corr.py 文件源码 项目:solar-correlation-map 作者: Zapf-Consulting 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def transform_to_correlation_dist(data):
    y_corr = np.corrcoef(data.T)
    # we just need the magnitude of the correlation and don't care whether it's positive or not
    abs_corr = np.abs(y_corr)
    return np.nan_to_num(abs_corr)


问题


面经


文章

微信
公众号

扫码关注公众号