python类vectorize()的实例源码

spatial_image_analysis.py 文件源码 项目:tissue_analysis 作者: VirtualPlants 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def consideronlylabels(self, list2consider, verbose = False):
        """
        Add labels to the ignoredlabels list (set) and update the self._labels cache.
        """
        if isinstance(list2consider, int):
            list2consider = [list2consider]

        toignore = set(np.unique(self.image))-set(list2consider)
        integers = np.vectorize(lambda x : int(x))
        toignore = integers(list(toignore)).tolist()


        if verbose: print 'Adding labels', toignore,'to the list of labels to ignore...'
        self._ignoredlabels.update(toignore)
        if verbose: print 'Updating labels list...'
        self._labels = self.__labels()
ocr.py 文件源码 项目:OCR 作者: OrangeGuo 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, num_hidden_nodes, data_matrix, data_labels, training_indices, use_file=True):
        # sigmoid??
        self.sigmoid = np.vectorize(self._sigmoid_scalar)
        # sigmoid????
        self.sigmoid_prime = np.vectorize(self._sigmoid_prime_scalar)
        # ??????
        self._use_file = use_file
        # ???
        self.data_matrix = data_matrix
        self.data_labels = data_labels
        if (not os.path.isfile(OCRNeuralNetwork.NN_FILE_PATH) or not use_file):
            # ???????
            self.theta1 = self._rand_initialize_weights(400, num_hidden_nodes)
            self.theta2 = self._rand_initialize_weights(num_hidden_nodes, 10)
            self.input_layer_bias = self._rand_initialize_weights(1, num_hidden_nodes)
            self.hidden_layer_bias = self._rand_initialize_weights(1, 10)

            # ?????
            TrainData = namedtuple('TrainData', ['y0', 'label'])
            self.train([TrainData(self.data_matrix[i], int(self.data_labels[i])) for i in training_indices])
            self.save()
        else:
            # ??nn.json?????
            self._load()
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 60 收藏 0 点赞 0 评论 0
def test_keywords2_ticket_2100(self):
        # Test kwarg support: enhancement ticket 2100

        def foo(a, b=1):
            return a + b

        f = vectorize(foo)
        args = np.array([1, 2, 3])
        r1 = f(a=args)
        r2 = np.array([2, 3, 4])
        assert_array_equal(r1, r2)
        r1 = f(b=1, a=args)
        assert_array_equal(r1, r2)
        r1 = f(args, b=2)
        r2 = np.array([3, 4, 5])
        assert_array_equal(r1, r2)
test_Bayesian.py 文件源码 项目:F_UNCLE 作者: fraserphysics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def setUp(self):
        """Setup script for each test
        """
        # Initial estimate of prior functional form
        init_prior = np.vectorize(lambda v: 2.56e9 / v**3)

        # Create the model and *true* EOS
        self.eos_model = EOSModel(init_prior, name="Default EOS Model")
        self.eos_true = EOSBump()

        # Create the objects to generate simulations and
        # pseudo experimental data
        self.exp1 = GunExperiment(model=self.eos_true)
        self.sim1 = Gun(name="Default Gun Simulation")

        self.exp2 = StickExperiment(model=self.eos_true)
        self.sim2 = Stick()

    # end
test_Experiments.py 文件源码 项目:F_UNCLE 作者: fraserphysics 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_shot_plot(self):
        """tests the plotting function
        """

        init_prior = np.vectorize(lambda v: 2.56e9 / v**3)

        # Create the model and *true* EOS
        eos = EOSModel(init_prior)

        gun = Gun()

        data0 = gun({'eos': eos})
        old_dof = eos.get_c()
        old_dof[0] *= 1.02
        eos.update_dof(old_dof)
        data1 = gun({'eos': eos})

        gun.plot(level=3, data=[data0, data1])

        gun.plot(level=1, data=[data0, data1])

        plt.show()
# end
test_activations.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_sigmoid():
    '''
    Test using a numerically stable reference sigmoid implementation
    '''
    def ref_sigmoid(x):
        if x >= 0:
            return 1 / (1 + np.exp(-x))
        else:
            z = np.exp(x)
            return z / (1 + z)
    sigmoid = np.vectorize(ref_sigmoid)

    x = K.placeholder(ndim=2)
    f = K.function([x], [activations.sigmoid(x)])
    test_values = get_standard_values()

    result = f([test_values])[0]
    expected = sigmoid(test_values)
    assert_allclose(result, expected, rtol=1e-05)
test_activations.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def test_hard_sigmoid():
    '''
    Test using a reference hard sigmoid implementation
    '''
    def ref_hard_sigmoid(x):
        '''
        Reference hard sigmoid with slope and shift values from theano, see
        https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py
        '''
        x = (x * 0.2) + 0.5
        z = 0.0 if x <= 0 else (1.0 if x >= 1 else x)
        return z
    hard_sigmoid = np.vectorize(ref_hard_sigmoid)

    x = K.placeholder(ndim=2)
    f = K.function([x], [activations.hard_sigmoid(x)])
    test_values = get_standard_values()

    result = f([test_values])[0]
    expected = hard_sigmoid(test_values)
    assert_allclose(result, expected, rtol=1e-05)
scaffold.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _get_new_id_seq(pos, numbers):
        """
        A helper function to produce the new sequence of the transformed
        structure. Algs is sort the position back to init and use the index
        to sort numbers.
        """
        # transfer the atom position into >=0 and <=1
        pos = np.around(pos, decimals=3)
        func_tofrac = np.vectorize(lambda x: round((x % 1), 3))
        o_pos = func_tofrac(pos)
        # round_o_pos = np.around(o_pos, decimals=3)
        # z, y, x = round_o_pos[:, 2], round_o_pos[:, 1], round_o_pos[:, 0]
        z, y, x = o_pos[:, 2], o_pos[:, 1], o_pos[:, 0]
        inds = np.lexsort((z, y, x))

        return inds
buckyball.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def _get_new_id_seq(pos, numbers):
        """
        A helper function to produce the new sequence of the transformed 
        structure. Algs is sort the position back to init and use the index
        to sort numbers.
        """
        # transfer the atom position into >=0 and <=1
        pos = np.around(pos, decimals=5)
        func_tofrac = np.vectorize(lambda x: round((x % 1), 3))
        o_pos = func_tofrac(pos)
        # round_o_pos = np.around(o_pos, decimals=3)
        # z, y, x = round_o_pos[:, 2], round_o_pos[:, 1], round_o_pos[:, 0]
        z, y, x = o_pos[:, 2], o_pos[:, 1], o_pos[:, 0]
        inds = np.lexsort((z, y, x))

        return inds
sogen.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def get_new_id_seq(pos, numbers):
    """
    A helper function to produce the new sequence of the transformed
    structure. Algs is sort the position back to init and use the index
    to sort numbers.
    """
    # transfer the atom position into >=0 and <=1
    pos = np.around(pos, decimals=5)
    func_tofrac = np.vectorize(lambda x: round((x % 1), 3))
    o_pos = func_tofrac(pos)
    # round_o_pos = np.around(o_pos, decimals=3)
    # z, y, x = round_o_pos[:, 2], round_o_pos[:, 1], round_o_pos[:, 0]
    z, y, x = o_pos[:, 2], o_pos[:, 1], o_pos[:, 0]
    inds = np.lexsort((z, y, x))

    return inds
frozen.py 文件源码 项目:kripodb 作者: 3D-e-Chem 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _ingest_pairs(self, pairs, oid2nid, frame_size, limit, single_sided):
        oid2nid_v = np.vectorize(oid2nid.get)
        # whole pairs set does not fit in memory, so split it in frames with `frame_size` number of pairs.
        for start in range(0, limit, frame_size):
            stop = frame_size + start
            t1 = process_time()
            six.print_('Fetching pairs {0}:{1} of {2} ... '.format(start, stop, limit), end='', flush=True)
            raw_frame = pairs.read(start=start, stop=stop)
            t2 = process_time()
            six.print_('{0}s, Parsing ... '.format(int(t2 - t1)), flush=True)
            frame = self._translate_frame(raw_frame, oid2nid_v, single_sided)
            t3 = process_time()
            six.print_('Writing ... '.format(int(t3 - t2)), flush=True)
            # alternate direction, to make use of cached chunks of prev frame
            self._ingest_pairs_frame(frame)
            del frame
            t4 = process_time()
            six.print_('{0}s, Done with {1}:{2} in {3}s'.format(int(t4 - t3), start, stop, int(t4 - t1)), flush=True)
tools.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def _plot_mpl(scheme):
    # pylint: disable=relative-import, unused-variable
    from mpl_toolkits.mplot3d import Axes3D

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_aspect('equal')

    flt = numpy.vectorize(float)
    pts = flt(scheme.points)
    wgs = flt(scheme.weights)

    for p, w in zip(pts, wgs):
        # <https://en.wikipedia.org/wiki/Spherical_cap>
        w *= 4 * numpy.pi
        theta = numpy.arccos(1.0 - abs(w) / (2*numpy.pi))
        color = '#1f77b4' if w >= 0 else '#d62728'
        _plot_spherical_cap_mpl(ax, p, theta, color)

    ax.set_axis_off()
    return
gauss_kronrod.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init__(self, n, a=0.0, b=0.0):
        # The general scheme is:
        # Get the Jacobi recurrence coefficients, get the Kronrod vectors alpha
        # and beta, and hand those off to orthopy.line.schemes.custom. There,
        # the eigenproblem for a tridiagonal matrix with alpha and beta is
        # solved to retrieve the points and weights.
        # TODO replace math.ceil by -(-k//n)
        length = int(math.ceil(3*n/2.0)) + 1
        self.degree = 2*length + 1
        _, _, alpha, beta = \
            orthopy.line.recurrence_coefficients.jacobi(length, a, b, 'monic')
        flt = numpy.vectorize(float)
        alpha = flt(alpha)
        beta = flt(beta)
        a, b = self.r_kronrod(n, alpha, beta)
        x, w = orthopy.line.schemes.custom(a, b, mode='numpy')
        # sort by x
        i = numpy.argsort(x)
        self.points = x[i]
        self.weights = w[i]
        return

    # pylint: disable=no-self-use
labelarray.py 文件源码 项目:catalyst 作者: enigmampc 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def map_predicate(self, f):
        """
        Map a function from str -> bool element-wise over ``self``.

        ``f`` will be applied exactly once to each non-missing unique value in
        ``self``. Missing values will always return False.
        """
        # Functions passed to this are of type str -> bool.  Don't ever call
        # them on None, which is the only non-str value we ever store in
        # categories.
        if self.missing_value is None:
            def f_to_use(x):
                return False if x is None else f(x)
        else:
            f_to_use = f

        # Call f on each unique value in our categories.
        results = np.vectorize(f_to_use, otypes=[bool_dtype])(self.categories)

        # missing_value should produce False no matter what
        results[self.reverse_categories[self.missing_value]] = False

        # unpack the results form each unique value into their corresponding
        # locations in our indices.
        return results[self.as_int_array()]
test_labelarray.py 文件源码 项目:catalyst 作者: enigmampc 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_map_shrinks_code_storage_if_possible(self):
        arr = LabelArray(
            # Drop the last value so we fit in a uint16 with None as a missing
            # value.
            self.create_categories(16, plus_one=False)[:-1],
            missing_value=None,
        )

        self.assertEqual(arr.itemsize, 2)

        def either_A_or_B(s):
            return ('A', 'B')[sum(ord(c) for c in s) % 2]

        result = arr.map(either_A_or_B)

        self.assertEqual(set(result.categories), {'A', 'B', None})
        self.assertEqual(result.itemsize, 1)

        assert_equal(
            np.vectorize(either_A_or_B)(arr.as_string_array()),
            result.as_string_array(),
        )
graph.py 文件源码 项目:py-graphart 作者: dandydarcy 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def coords_edges(self, edges):
        '''
        Returns a list of coordinates head and tail points for all edge in edges
        '''
        res = np.empty((len(edges)), dtype=object)
        for r, e in zip(range(len(edges)), edges):
            if e[0] is None:
                e[0] = 0
            res[r] = self.coords_edge(e)
            if len(res[r][0]) != 2:
                print 'there is an error with the edges'
                import pdb
                pdb.set_trace()

        # v = np.vectorize(self.coords_edge, otypes=[np.object])
        # res = v(edges)
        return res
matplotlib.py 文件源码 项目:physt 作者: janpipek 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _get_alpha_data(data, kwargs):
    """Get alpha values for all data points.

    Parameters
    ----------
    data : array_like
    alpha: Callable or float
        This can be a fixed value or a function of the data.

    Returns
    -------
    array_like
    """
    alpha = kwargs.pop("alpha", 1)
    if hasattr(alpha, "__call__"):
        return np.vectorize(alpha)(data)
    return alpha
RateDistribution.py 文件源码 项目:EndemicPy 作者: j-i-l 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def __init__(self, scale, pre=10):
        """
        This class holds a queue of times drawn from an exponential 
            distribution with a specified scale.

        Arguments:

            - scale: The scale parameter for the exponential distribution.
            - pre: Predefined size of the queue. Default=10
        """
        self.scale = scale
        self.pre = pre
        self.queue = SimpleQueue(maxsize=pre + 1)
        self.v_put = vectorize(self.queue.put_nowait)
        #the exponential dist is not defined for a rate of 0
        #therefore if the rate is 0 (scale is None then) huge times are set
        if self.scale in [None, 0]:
            self.scale = 0
            self.draw_fct = no_mut
        else:
            self.draw_fct = random.exponential
        #fillup the queue
        self.fillup()
        # there was: (new version compatible with pickeling see method below)
        self.v_get = vectorize(self.get_val)
RateDistribution.py 文件源码 项目:EndemicPy 作者: j-i-l 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def __setstate__(self, d):
        if 'simple_queue_list' in d:
            event_queue_list = d.pop('simple_queue_list')
            d['queue'] = SimpleQueue(maxsize=d['pre'] + 1)
            while len(event_queue_list):
                d['queue'].put_nowait(event_queue_list.pop())
        self.__dict__.update(d)
        self.__dict__['v_put'] = vectorize(self.queue.put_nowait)
        #d['v_put'] = vectorize(d['queue'].put_nowait)
        #self.__dict__.update(d)
        self.__dict__['v_get'] = vectorize(self.get_val)
        if self.scale is None:
            self.scale = 0
            self.queue = SimpleQueue(maxsize=self.pre + 1)
            self.v_put = vectorize(self.queue.put_nowait)  # this is specific to the queue, thus reinit here
            self.draw_fct = no_mut
            self.fillup()
GraphConstructor.py 文件源码 项目:EndemicPy 作者: j-i-l 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, source, **params):
        #_Graph.__init__(self)
        self.is_static = False
        if isinstance(source, str):  # it is a file
            self._load(source, **params)
        else:  # source must be an EventQueue then
            # to do: read from event queue
            # should also get self.starts, ...
            pass
        self.t_start = params.get('t_start', np.min(self.starts))
        self.t_stop = params.get('t_stop', np.max(self.stops))
        # ToDo: Ideally only use self.all_nodes
        self.all_nodes = list(np.union1d(self.node1s, self.node2s))
        all_nodes = list(np.union1d(self.node1s, self.node2s))
        n = len(self.all_nodes)

        def get_id(an_id):
            return all_nodes.index(an_id)
        v_get_id = np.vectorize(get_id)

        self.node1s = v_get_id(self.node1s)
        self.node2s = v_get_id(self.node2s)
        # now we need to remap the node ids
        _Graph.__init__(self, n=n)
graph.py 文件源码 项目:PyGraphArt 作者: dnlcrl 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def coords_edges(self, edges):
        '''
        Returns a list of coordinates head and tail points for all edge in edges
        '''
        res = np.empty((len(edges)), dtype=object)
        for r, e in zip(range(len(edges)), edges):
            if e[0] is None:
                e[0] = 0
            res[r] = self.coords_edge(e)
            if len(res[r][0]) != 2:
                print 'there is an error with the edges'
                import pdb
                pdb.set_trace()

        # v = np.vectorize(self.coords_edge, otypes=[np.object])
        # res = v(edges)
        return res
genotypes_service.py 文件源码 项目:varapp-backend-py 作者: varapp 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _init_genotypes(self):
        """Construct an array of genotype vectors, one per variant.
           If it is found in cache, use the cached version,
           otherwise recompute it and cache the result.
           Either way, store a copy in local process memory.
        """
        if self.genotypes_key in self.cache:
            # Read cache, store in local memory
            self._gt_types_bit = self._get_genotypes()
        else:
            # Regenerate, cache, and store in local memory
            gt_types = extract_genotypes(db=self.db)
            f = np.vectorize(variant_build_gt_type_bit, otypes=[np.uint8])  # apply to all array elements
            self._gt_types_bit = f(gt_types)
            self._gt_types_bit.flags.writeable = False  # make it immutable
            self._save_genotypes(self._gt_types_bit)
minesweeper.py 文件源码 项目:solving-minesweeper-by-tensorflow 作者: staytime 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def game(self, mask = False):
        q = list()

        if mask is True:
            q.append(self.layers.flags)
            q.append(self.layers.masks)

        q.append(self.layers.mines)
        q.append(self.layers.hints)

        __ = self.addLayers(q)
        __[__ == None] = __TOKEN_EMPTY__

        f = np.vectorize(str)

        return f(__).T.tolist()
test_function_base.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def test_keywords2_ticket_2100(self):
        # Test kwarg support: enhancement ticket 2100

        def foo(a, b=1):
            return a + b

        f = vectorize(foo)
        args = np.array([1, 2, 3])
        r1 = f(a=args)
        r2 = np.array([2, 3, 4])
        assert_array_equal(r1, r2)
        r1 = f(b=1, a=args)
        assert_array_equal(r1, r2)
        r1 = f(args, b=2)
        r2 = np.array([3, 4, 5])
        assert_array_equal(r1, r2)
test_activations.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_sigmoid():
    '''
    Test using a numerically stable reference sigmoid implementation
    '''
    def ref_sigmoid(x):
        if x >= 0:
            return 1 / (1 + np.exp(-x))
        else:
            z = np.exp(x)
            return z / (1 + z)
    sigmoid = np.vectorize(ref_sigmoid)

    x = K.placeholder(ndim=2)
    f = K.function([x], [activations.sigmoid(x)])
    test_values = get_standard_values()

    result = f([test_values])[0]
    expected = sigmoid(test_values)
    assert_allclose(result, expected, rtol=1e-05)
test_activations.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_hard_sigmoid():
    '''
    Test using a reference hard sigmoid implementation
    '''
    def ref_hard_sigmoid(x):
        '''
        Reference hard sigmoid with slope and shift values from theano, see
        https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py
        '''
        x = (x * 0.2) + 0.5
        z = 0.0 if x <= 0 else (1.0 if x >= 1 else x)
        return z
    hard_sigmoid = np.vectorize(ref_hard_sigmoid)

    x = K.placeholder(ndim=2)
    f = K.function([x], [activations.hard_sigmoid(x)])
    test_values = get_standard_values()

    result = f([test_values])[0]
    expected = hard_sigmoid(test_values)
    assert_allclose(result, expected, rtol=1e-05)
svm.py 文件源码 项目:NTHU-Machine-Learning 作者: YuChunLOL 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def _postcompute_biases(self):
        """ Post-computed biases for non-boundary training examples (support vectors) when training is done.
            This is for estimating sample mean and sample std of biases.
            For a good learning result, sample std of biases should be small.
        """
        def _b(i):
            if self.enable_kernel_cache:
                return self.train_y[i] - np.dot(self.alpha*self.train_y, self.kernel_cache[i])
            else:
                return self.train_y[i] - self._f(self.train_X[i])

        I_non_boundary = np.where(np.logical_and(self.alpha > 0, self.alpha < self.C) == True)[0].tolist()

        if len(I_non_boundary):
            biases = np.vectorize(_b)(I_non_boundary)
            self.b_mean = np.mean(biases)
            self.b_std = np.sqrt(np.sum((biases - self.b_mean)**2) / (len(biases) - 1))
            self.postcomputed_biases[I_non_boundary] = biases
twospec.py 文件源码 项目:PyCS 作者: COSMOGRAIL 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def calcr2s(lc1, lc2, reltimeshifts, spline, trace=False):
    """
    I calcuate the r2 for an array of relative time shifts.
    To be compated to calcd2 of pycs.pelt.twospec !
    """

    lc2abstimeshifts = reltimeshifts + lc2.timeshift

    def r2(lc2abstimeshift):

        # We work with copies at every trial time delay, to always start from the same position.
        mylc1 = lc1.copy()
        mylc2 = lc2.copy()
        mylc2.timeshift = lc2abstimeshift
        myspline = spline.copy()

        return pycs.spl.multiopt.opt_source([mylc1, mylc2], myspline, verbose=False, trace=trace)

    # We vectorize this before applying it to our abstimeshifts
    vecr2 = np.vectorize(r2, otypes=[np.ndarray])
    r2s = vecr2(lc2abstimeshifts)

    return r2s
test_function_base.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def test_keywords2_ticket_2100(self):
        # Test kwarg support: enhancement ticket 2100

        def foo(a, b=1):
            return a + b

        f = vectorize(foo)
        args = np.array([1, 2, 3])
        r1 = f(a=args)
        r2 = np.array([2, 3, 4])
        assert_array_equal(r1, r2)
        r1 = f(b=1, a=args)
        assert_array_equal(r1, r2)
        r1 = f(args, b=2)
        r2 = np.array([3, 4, 5])
        assert_array_equal(r1, r2)
Stock_Prediction_Data_Processing.py 文件源码 项目:StockRecommendSystem 作者: doncat99 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def preprocessing_train_data(paras, df, LabelColumnName, ticker, train_tickers_dict, one_hot_label_proc, array_format=True):
    day_list=train_tickers_dict[ticker]
    index_df=np.vectorize(lambda s: s.strftime('%Y-%m-%d'))(df.index.to_pydatetime())
    df.index=index_df
    common_day=list(set(day_list).intersection(set(index_df)))
    df=df.loc[common_day]
    X = df.drop(LabelColumnName, 1)
    y = np.array(df[LabelColumnName])
    #print(X.head())

    # print("ticker", ticker)
    # print(X)

    if one_hot_label_proc == True:
        # generate one hot output
        y_normalized_T = one_hot_processing(y, paras.n_out_class)
    else:
        y_normalized_T = y.astype(int)  # np.repeat(float('nan'), len(y))

    if array_format: return X.values, y_normalized_T

    return X, y_normalized_T


问题


面经


文章

微信
公众号

扫码关注公众号