python类float16()的实例源码

doodle.py 文件源码 项目:neural-doodle 作者: alexjc 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def prepare_style(self, scale=1.0):
        """Called each phase of the optimization, process the style image according to the scale, then run it
        through the model to extract intermediate outputs (e.g. sem4_1) and turn them into patches.
        """
        style_img = self.rescale_image(self.style_img_original, scale)
        self.style_img = self.model.prepare_image(style_img)

        style_map = self.rescale_image(self.style_map_original, scale)
        self.style_map = style_map.transpose((2, 0, 1))[np.newaxis].astype(np.float32)

        # Compile a function to run on the GPU to extract patches for all layers at once.
        layer_outputs = zip(self.style_layers, self.model.get_outputs('sem', self.style_layers))
        extractor = self.compile([self.model.tensor_img, self.model.tensor_map], self.do_extract_patches(layer_outputs))
        result = extractor(self.style_img, self.style_map)

        # Store all the style patches layer by layer, resized to match slice size and cast to 16-bit for size. 
        self.style_data = {}
        for layer, *data in zip(self.style_layers, result[0::3], result[1::3], result[2::3]):
            patches = data[0]
            l = self.model.network['nn'+layer]
            l.num_filters = patches.shape[0] // args.slices
            self.style_data[layer] = [d[:l.num_filters*args.slices].astype(np.float16) for d in data]\
                                   + [np.zeros((patches.shape[0],), dtype=np.float16)]
            print('  - Style layer {}: {} patches in {:,}kb.'.format(layer, patches.shape, patches.size//1000))
data.py 文件源码 项目:iNaturalist 作者: phunterlau 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def add_data_args(parser):
    data = parser.add_argument_group('Data', 'the input images')
    #data.add_argument('--data-train', type=str, help='the training data')
    #data.add_argument('--data-val', type=str, help='the validation data')
    data.add_argument('--rgb-mean', type=str, default='123.68,116.779,103.939',
                      help='a tuple of size 3 for the mean rgb')
    data.add_argument('--pad-size', type=int, default=0,
                      help='padding the input image')
    data.add_argument('--image-shape', type=str,
                      help='the image shape feed into the network, e.g. (3,224,224)')
    data.add_argument('--num-classes', type=int, help='the number of classes')
    data.add_argument('--num-examples', type=int, help='the number of training examples')
    data.add_argument('--data-nthreads', type=int, default=4,
                      help='number of threads for data decoding')
    data.add_argument('--benchmark', type=int, default=0,
                      help='if 1, then feed the network with synthetic data')
    data.add_argument('--dtype', type=str, default='float32',
                      help='data type: float32 or float16')
    return data
tests.py 文件源码 项目:higlass-server 作者: hms-dbmi 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def test_tile_symmetry(self):
        '''
        Make sure that tiles are symmetric
        '''
        upload_file = open('data/Dixon2012-J1-NcoI-R1-filtered.100kb.multires.cool', 'rb')
        tileset = tm.Tileset.objects.create(
            datafile=dcfu.SimpleUploadedFile(upload_file.name, upload_file.read()),
            filetype='cooler',
            datatype='matrix',
            owner=self.user1,
            uuid='aa')

        ret = self.client.get('/api/v1/tiles/?d=aa.0.0.0')


        contents = json.loads(ret.content.decode('utf-8'))

        import base64
        r = base64.decodestring(contents['aa.0.0.0']['dense'].encode('utf-8'))
        q = np.frombuffer(r, dtype=np.float16)

        q = q.reshape((256,256))
replay_memory.py 文件源码 项目:RFR-solution 作者: baoblackcoal 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, config, model_dir, ob_shape_list):
    self.model_dir = model_dir

    self.cnn_format = config.cnn_format
    self.memory_size = config.memory_size
    self.actions = np.empty(self.memory_size, dtype = np.uint8)
    self.rewards = np.empty(self.memory_size, dtype = np.integer)
    # print(self.memory_size, config.screen_height, config.screen_width)
    # self.screens = np.empty((self.memory_size, config.screen_height, config.screen_width), dtype = np.float16)
    self.screens = np.empty([self.memory_size] + ob_shape_list, dtype = np.float16)
    self.terminals = np.empty(self.memory_size, dtype = np.bool)
    self.history_length = config.history_length
    # self.dims = (config.screen_height, config.screen_width)
    self.dims = tuple(ob_shape_list)
    self.batch_size = config.batch_size
    self.count = 0
    self.current = 0

    # pre-allocate prestates and poststates for minibatch
    self.prestates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
    self.poststates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
    # self.prestates = np.empty((self.batch_size, self.history_length, self.dims), dtype = np.float16)
    # self.poststates = np.empty((self.batch_size, self.history_length, self.dims), dtype = np.float16)
test_ufunc.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_sum(self):
        for dt in (np.int, np.float16, np.float32, np.float64, np.longdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                tgt = dt(v * (v + 1) / 2)
                d = np.arange(1, v + 1, dtype=dt)
                assert_almost_equal(np.sum(d), tgt)
                assert_almost_equal(np.sum(d[::-1]), tgt)

            d = np.ones(500, dtype=dt)
            assert_almost_equal(np.sum(d[::2]), 250.)
            assert_almost_equal(np.sum(d[1::2]), 250.)
            assert_almost_equal(np.sum(d[::3]), 167.)
            assert_almost_equal(np.sum(d[1::3]), 167.)
            assert_almost_equal(np.sum(d[::-2]), 250.)
            assert_almost_equal(np.sum(d[-1::-2]), 250.)
            assert_almost_equal(np.sum(d[::-3]), 167.)
            assert_almost_equal(np.sum(d[-1::-3]), 167.)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt)
            d += d
            assert_almost_equal(d, 2.)
test_half.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def setUp(self):
        # An array of all possible float16 values
        self.all_f16 = np.arange(0x10000, dtype=uint16)
        self.all_f16.dtype = float16
        self.all_f32 = np.array(self.all_f16, dtype=float32)
        self.all_f64 = np.array(self.all_f16, dtype=float64)

        # An array of all non-NaN float16 values, in sorted order
        self.nonan_f16 = np.concatenate(
                                (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
                                 np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
        self.nonan_f16.dtype = float16
        self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
        self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)

        # An array of all finite float16 values, in sorted order
        self.finite_f16 = self.nonan_f16[1:-1]
        self.finite_f32 = self.nonan_f32[1:-1]
        self.finite_f64 = self.nonan_f64[1:-1]
test_half.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_half_values(self):
        """Confirms a small number of known half values"""
        a = np.array([1.0, -1.0,
                      2.0, -2.0,
                      0.0999755859375, 0.333251953125,  # 1/10, 1/3
                      65504, -65504,           # Maximum magnitude
                      2.0**(-14), -2.0**(-14),  # Minimum normal
                      2.0**(-24), -2.0**(-24),  # Minimum subnormal
                      0, -1/1e1000,            # Signed zeros
                      np.inf, -np.inf])
        b = np.array([0x3c00, 0xbc00,
                      0x4000, 0xc000,
                      0x2e66, 0x3555,
                      0x7bff, 0xfbff,
                      0x0400, 0x8400,
                      0x0001, 0x8001,
                      0x0000, 0x8000,
                      0x7c00, 0xfc00], dtype=uint16)
        b.dtype = float16
        assert_equal(a, b)
test_half.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_half_ordering(self):
        """Make sure comparisons are working right"""

        # All non-NaN float16 values in reverse order
        a = self.nonan_f16[::-1].copy()

        # 32-bit float copy
        b = np.array(a, dtype=float32)

        # Should sort the same
        a.sort()
        b.sort()
        assert_equal(a, b)

        # Comparisons should work
        assert_((a[:-1] <= a[1:]).all())
        assert_(not (a[:-1] > a[1:]).any())
        assert_((a[1:] >= a[:-1]).all())
        assert_(not (a[1:] < a[:-1]).any())
        # All != except for +/-0
        assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size-2)
        assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size-2)
test_half.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_half_coercion(self):
        """Test that half gets coerced properly with the other types"""
        a16 = np.array((1,), dtype=float16)
        a32 = np.array((1,), dtype=float32)
        b16 = float16(1)
        b32 = float32(1)

        assert_equal(np.power(a16, 2).dtype, float16)
        assert_equal(np.power(a16, 2.0).dtype, float16)
        assert_equal(np.power(a16, b16).dtype, float16)
        assert_equal(np.power(a16, b32).dtype, float16)
        assert_equal(np.power(a16, a16).dtype, float16)
        assert_equal(np.power(a16, a32).dtype, float32)

        assert_equal(np.power(b16, 2).dtype, float64)
        assert_equal(np.power(b16, 2.0).dtype, float64)
        assert_equal(np.power(b16, b16).dtype, float16)
        assert_equal(np.power(b16, b32).dtype, float32)
        assert_equal(np.power(b16, a16).dtype, float16)
        assert_equal(np.power(b16, a32).dtype, float32)

        assert_equal(np.power(a32, a16).dtype, float32)
        assert_equal(np.power(a32, b16).dtype, float32)
        assert_equal(np.power(b32, a16).dtype, float16)
        assert_equal(np.power(b32, b16).dtype, float32)
helper.py 文件源码 项目:cupy 作者: cupy 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def for_float_dtypes(name='dtype', no_float16=False):
    """Decorator that checks the fixture with all float dtypes.

    Args:
         name(str): Argument name to which specified dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.

    dtypes to be tested are ``numpy.float16`` (optional), ``numpy.float32``,
    and ``numpy.float64``.

    .. seealso:: :func:`cupy.testing.for_dtypes`,
        :func:`cupy.testing.for_all_dtypes`
    """
    if no_float16:
        return for_dtypes(_regular_float_dtypes, name=name)
    else:
        return for_dtypes(_float_dtypes, name=name)
helper.py 文件源码 项目:cupy 作者: cupy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def for_all_dtypes_combination(names=('dtyes',),
                               no_float16=False, no_bool=False, full=None,
                               no_complex=False):
    """Decorator that checks the fixture with a product set of all dtypes.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).
         no_complex(bool): If, True, ``numpy.complex64`` and
             ``numpy.complex128`` are omitted from candidate dtypes.

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    types = _make_all_dtypes(no_float16, no_bool, no_complex)
    return for_dtypes_combination(types, names, full)
data.py 文件源码 项目:dtnn 作者: atomistic-machine-learning 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def convert_atoms(self, row):
        numbers = row.get('numbers')
        positions = row.get('positions').astype(self.floatX)
        pbc = row.get('pbc')
        cell = row.get('cell').astype(self.floatX)
        features = [numbers, positions, cell, pbc]

        for k in list(self.kvp.keys()):
            f = row[k]
            if np.isscalar(f):
                f = np.array([f])
            if f.dtype in [np.float16, np.float32, np.float64]:
                f = f.astype(self.floatX)
            features.append(f)
        for k in list(self.data.keys()):
            f = np.array(row.data[k])
            if np.isscalar(f):
                f = np.array([f])
            if f.dtype in [np.float16, np.float32, np.float64]:
                f = f.astype(self.floatX)
            features.append(f)
        return features
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
bullet_cartpole.py 文件源码 项目:cartpoleplusplus 作者: matpalm 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def render_rgb(self, camera_idx):
    cameraPos = [(0.0, 0.75, 0.75), (0.75, 0.0, 0.75)][camera_idx]
    targetPos = (0, 0, 0.3)
    cameraUp = (0, 0, 1)
    nearVal, farVal = 1, 20
    fov = 60
    _w, _h, rgba, _depth, _objects = p.renderImage(self.render_width, self.render_height,
                                                   cameraPos, targetPos, cameraUp,
                                                   nearVal, farVal, fov)
    # convert from 1d uint8 array to (H,W,3) hacky hardcode whitened float16 array.
    # TODO: for storage concerns could just store this as uint8 (which it is)
    # and normalise 0->1 + whiten later.
    rgba_img = np.reshape(np.asarray(rgba, dtype=np.float16),
                          (self.render_height, self.render_width, 4))
    rgb_img = rgba_img[:,:,:3]  # slice off alpha, always 1.0
    rgb_img /= 255
    return rgb_img
mxnet_backend.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _typename(t):
    if t == np.float16:
        return 'float16'
    elif t == np.float32:
        return 'float32'
    elif t == np.float64:
        return 'float64'
    elif t == np.uint8:
        return 'uint8'
    elif t == np.uint16:
        return 'uint16'
    elif t == np.int16:
        return 'int16'
    elif t == np.int32:
        return 'int32'
    elif t == np.int64:
        return 'int64'
    else:
        raise TypeError('unknown type')
json.py 文件源码 项目:incubator-airflow-old 作者: apache 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
test_ufunc.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_sum(self):
        for dt in (np.int, np.float16, np.float32, np.float64, np.longdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                tgt = dt(v * (v + 1) / 2)
                d = np.arange(1, v + 1, dtype=dt)
                assert_almost_equal(np.sum(d), tgt)
                assert_almost_equal(np.sum(d[::-1]), tgt)

            d = np.ones(500, dtype=dt)
            assert_almost_equal(np.sum(d[::2]), 250.)
            assert_almost_equal(np.sum(d[1::2]), 250.)
            assert_almost_equal(np.sum(d[::3]), 167.)
            assert_almost_equal(np.sum(d[1::3]), 167.)
            assert_almost_equal(np.sum(d[::-2]), 250.)
            assert_almost_equal(np.sum(d[-1::-2]), 250.)
            assert_almost_equal(np.sum(d[::-3]), 167.)
            assert_almost_equal(np.sum(d[-1::-3]), 167.)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt)
            d += d
            assert_almost_equal(d, 2.)
test_half.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def setUp(self):
        # An array of all possible float16 values
        self.all_f16 = np.arange(0x10000, dtype=uint16)
        self.all_f16.dtype = float16
        self.all_f32 = np.array(self.all_f16, dtype=float32)
        self.all_f64 = np.array(self.all_f16, dtype=float64)

        # An array of all non-NaN float16 values, in sorted order
        self.nonan_f16 = np.concatenate(
                                (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
                                 np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
        self.nonan_f16.dtype = float16
        self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
        self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)

        # An array of all finite float16 values, in sorted order
        self.finite_f16 = self.nonan_f16[1:-1]
        self.finite_f32 = self.nonan_f32[1:-1]
        self.finite_f64 = self.nonan_f64[1:-1]
test_half.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_half_values(self):
        """Confirms a small number of known half values"""
        a = np.array([1.0, -1.0,
                      2.0, -2.0,
                      0.0999755859375, 0.333251953125,  # 1/10, 1/3
                      65504, -65504,           # Maximum magnitude
                      2.0**(-14), -2.0**(-14),  # Minimum normal
                      2.0**(-24), -2.0**(-24),  # Minimum subnormal
                      0, -1/1e1000,            # Signed zeros
                      np.inf, -np.inf])
        b = np.array([0x3c00, 0xbc00,
                      0x4000, 0xc000,
                      0x2e66, 0x3555,
                      0x7bff, 0xfbff,
                      0x0400, 0x8400,
                      0x0001, 0x8001,
                      0x0000, 0x8000,
                      0x7c00, 0xfc00], dtype=uint16)
        b.dtype = float16
        assert_equal(a, b)
test_half.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_half_ordering(self):
        """Make sure comparisons are working right"""

        # All non-NaN float16 values in reverse order
        a = self.nonan_f16[::-1].copy()

        # 32-bit float copy
        b = np.array(a, dtype=float32)

        # Should sort the same
        a.sort()
        b.sort()
        assert_equal(a, b)

        # Comparisons should work
        assert_((a[:-1] <= a[1:]).all())
        assert_(not (a[:-1] > a[1:]).any())
        assert_((a[1:] >= a[:-1]).all())
        assert_(not (a[1:] < a[:-1]).any())
        # All != except for +/-0
        assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size-2)
        assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size-2)
test_half.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_half_coercion(self):
        """Test that half gets coerced properly with the other types"""
        a16 = np.array((1,), dtype=float16)
        a32 = np.array((1,), dtype=float32)
        b16 = float16(1)
        b32 = float32(1)

        assert_equal(np.power(a16, 2).dtype, float16)
        assert_equal(np.power(a16, 2.0).dtype, float16)
        assert_equal(np.power(a16, b16).dtype, float16)
        assert_equal(np.power(a16, b32).dtype, float16)
        assert_equal(np.power(a16, a16).dtype, float16)
        assert_equal(np.power(a16, a32).dtype, float32)

        assert_equal(np.power(b16, 2).dtype, float64)
        assert_equal(np.power(b16, 2.0).dtype, float64)
        assert_equal(np.power(b16, b16).dtype, float16)
        assert_equal(np.power(b16, b32).dtype, float32)
        assert_equal(np.power(b16, a16).dtype, float16)
        assert_equal(np.power(b16, a32).dtype, float32)

        assert_equal(np.power(a32, a16).dtype, float32)
        assert_equal(np.power(a32, b16).dtype, float32)
        assert_equal(np.power(b32, a16).dtype, float16)
        assert_equal(np.power(b32, b16).dtype, float32)
test_dsfaker.py 文件源码 项目:dsfaker 作者: Dubrzr 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_values_single(self):
        time_delay_sec = 0.005
        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16), time_delay_sec=time_delay_sec)

        start_time = datetime.datetime.now()
        for _ in range(100):
            tdg.get_single()
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53)

        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16),
                                   time_delay_generator=ConstantValueGenerator(time_delay_sec, dtype=np.float16))

        start_time = datetime.datetime.now()
        for _ in range(100):
            tdg.get_single()
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53)
test_dsfaker.py 文件源码 项目:dsfaker 作者: Dubrzr 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_values_batch(self):
        time_delay_sec = 0.0005
        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16), time_delay_sec=time_delay_sec)

        start_time = datetime.datetime.now()
        for _ in range(10):
            tdg.get_batch(100)
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53)

        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16),
                                   time_delay_generator=ConstantValueGenerator(time_delay_sec, dtype=np.float16))

        start_time = datetime.datetime.now()
        for _ in range(10):
            tdg.get_batch(100)
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53)
direction_indicators.py 文件源码 项目:ppytrading 作者: yusukemurayama 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _build_indicator(self, span, **kwds):
        """indicator????????????

        Args:
            span: ??????????
        """
        def get_direction(val1, val2):
            if np.isnan(val1) or np.isnan(val1):
                return np.nan
            elif val1 < val2:
                return const.INDI_DIRECTION_UP  # ???
            elif val1 > val2:
                return const.INDI_DIRECTION_DOWN  # ???
            else:
                return const.INDI_DIRECTION_HR  # ??

        ma = MovingAverageIndicator(stock=self.stock, span=span)
        arr1 = ma.shifted(-1)  # ???????????
        arr2 = ma.data  # ???????
        return np.array([get_direction(a, b) for a, b
                         in zip(arr1, arr2)], dtype=np.float16)
replay_memory.py 文件源码 项目:slither.ml 作者: MadcowD 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, config, model_dir):
    self.model_dir = model_dir

    self.cnn_format = config.cnn_format
    self.memory_size = config.memory_size
    self.actions = np.empty(self.memory_size, dtype = np.uint8)
    self.rewards = np.empty(self.memory_size, dtype = np.integer)
    self.screens = np.empty((self.memory_size, config.screen_height, config.screen_width), dtype = np.float16)
    self.terminals = np.empty(self.memory_size, dtype = np.bool)
    self.history_length = config.history_length
    self.dims = (config.screen_height, config.screen_width)
    self.batch_size = config.batch_size
    self.count = 0
    self.current = 0

    # pre-allocate prestates and poststates for minibatch
    self.prestates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
    self.poststates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
helper.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def for_float_dtypes(name='dtype', no_float16=False):
    """Decorator that checks the fixture with all float dtypes.

    Args:
         name(str): Argument name to which specified dtypes are passed.
         no_float16(bool): If, True, ``numpy.float16`` is
             omitted from candidate dtypes.

    dtypes to be tested are ``numpy.float16`` (optional), ``numpy.float32``,
    and ``numpy.float64``.

    .. seealso:: :func:`cupy.testing.for_dtypes`,
        :func:`cupy.testing.for_all_dtypes`
    """
    if no_float16:
        return for_dtypes(_regular_float_dtypes, name=name)
    else:
        return for_dtypes(_float_dtypes, name=name)
helper.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def for_all_dtypes_combination(names=['dtyes'],
                               no_float16=False, no_bool=False, full=None):
    """Decorator that checks the fixture with a product set of all dtypes.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    types = _make_all_dtypes(no_float16, no_bool)
    return for_dtypes_combination(types, names, full)
softmax.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, x):
        xp = cuda.get_array_module(*x)
        if (xp != numpy and cuda.cudnn_enabled and self.use_cudnn and
                (_cudnn_version >= 3000 or x[0].dtype != numpy.float16)):
            oz_dtype = 'd' if x[0].dtype == 'd' else 'f'
            one = numpy.array(1, dtype=oz_dtype).ctypes
            zero = numpy.array(0, dtype=oz_dtype).ctypes
            handle = cudnn.get_handle()
            x_cube = x[0].reshape(x[0].shape[:2] + (-1, 1))
            desc = cudnn.create_tensor_descriptor(x_cube)
            self.y = xp.empty_like(x[0])
            libcudnn.softmaxForward(
                handle, _algorithm, _mode, one.data, desc.value,
                x_cube.data.ptr, zero.data, desc.value,
                self.y.data.ptr)
        else:
            self.y = x[0] - x[0].max(axis=1, keepdims=True)
            xp.exp(self.y, out=self.y)
            self.y /= self.y.sum(axis=1, keepdims=True)

        return self.y,
test_basic_math.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 79 收藏 0 点赞 0 评论 0
def check_forward(self, op, x_data, gpu, positive):
        value = self.value
        if positive:
            value = numpy.abs(value)
        v = value
        if gpu:
            v = cuda.to_gpu(v)
        x = chainer.Variable(x_data)
        y = op(x, v)
        if self.dtype == numpy.float16:
            tol = 1e-3
        else:
            tol = 1e-6

        gradient_check.assert_allclose(
            op(self.x, value), y.data, atol=tol, rtol=tol)


问题


面经


文章

微信
公众号

扫码关注公众号