python类logical_or()的实例源码

test_ufunc.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
core.py 文件源码 项目:aws-lambda-numpy 作者: vitolimandibhrata 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def outer(self, a, b):
        """
        Return the function applied to the outer product of a and b.

        """
        (da, db) = (getdata(a), getdata(b))
        d = self.f.outer(da, db)
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = umath.logical_or.outer(ma, mb)
        if (not m.ndim) and m:
            return masked
        if m is not nomask:
            np.copyto(d, da, where=m)
        if not d.shape:
            return d
        masked_d = d.view(get_masked_subclass(a, b))
        masked_d._mask = m
        masked_d._update_from(d)
        return masked_d
pyembedding.py 文件源码 项目:pyembedding 作者: cobeylab 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def construct_embedding_matrix(self):
        min_delay = numpy.min(self.delays)
        max_delay = numpy.max(self.delays)

        t_list = []
        embedding_list = []
        for i in range(self.x.shape[0]):
            if (i - max_delay < 0) or (i - min_delay) >= self.x.shape[0]:
                continue
            delay_vector = numpy.array([self.x[i - delay] for delay in self.delays])
            if numpy.any(numpy.logical_or(numpy.isnan(delay_vector), numpy.isinf(delay_vector))):
                continue
            t_list.append(i)
            embedding_list.append(delay_vector)

        if len(embedding_list) == 0:
            self.t = numpy.array(t_list, dtype=float)
            self.embedding_mat = numpy.zeros((0, len(self.delays)), dtype=float)
        else:
            self.t = numpy.array(t_list)
            self.embedding_mat = numpy.array(embedding_list)
            assert self.embedding_mat.shape[1] == len(self.delays)
pyembedding.py 文件源码 项目:pyembedding 作者: cobeylab 项目源码 文件源码 阅读 78 收藏 0 点赞 0 评论 0
def correlation_valid(x, y):
    invalid = numpy.logical_or(numpy.isnan(x), numpy.isnan(y))
    valid = numpy.logical_not(invalid)
    valid_count = valid.sum()

    if valid_count == 0:
        corr = float('nan')
        sd_x = float('nan')
        sd_y = float('nan')
    else:
        sd_x = numpy.std(x[valid])
        sd_y = numpy.std(y[valid])

        if sd_x == 0 and sd_y == 0:
            corr = 1.0
        elif sd_x == 0 or sd_y == 0:
            corr = 0.0
        else:
            corr = numpy.corrcoef(x[valid], y[valid])[0,1]

    return corr, valid_count, sd_x, sd_y
projection.py 文件源码 项目:pyembedding 作者: cobeylab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def correlation_valid(x, y):
    invalid = numpy.logical_or(numpy.isnan(x), numpy.isnan(y))
    valid = numpy.logical_not(invalid)
    valid_count = valid.sum()

    if valid_count == 0:
        corr = float('nan')
        sd_x = float('nan')
        sd_y = float('nan')
    else:
        sd_x = numpy.std(x[valid])
        sd_y = numpy.std(y[valid])

        if sd_x == 0 and sd_y == 0:
            corr = 1.0
        elif sd_x == 0 or sd_y == 0:
            corr = 0.0
        else:
            corr = numpy.corrcoef(x[valid], y[valid])[0,1]

    return corr, valid_count, sd_x, sd_y
suttonchen.py 文件源码 项目:sdaopt 作者: sgubianpm 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def sutton_chen(x):
    x = x.reshape((int(x.size/3), 3))
    idx = np.array(list(np.arange(0, x.shape[0])) * x.shape[0])
    jdx = np.concatenate([[a] * x.shape[0] for a in range(
        0, x.shape[0])])
    index = np.column_stack((idx, jdx))
    index = index[index[:, 0] < index[:, 1], :]
    rij = np.zeros(index.shape[0])
    for i in range(index.shape[0]):
        rij[i] = np.sqrt(np.sum((x[index[i, 0], :] - x[
            index[i, 1], :]) ** 2))
    f1s = np.zeros(index.shape[0])
    rhos = np.zeros(index.shape[0])
    for i in range(0, x.shape[0]):
        idx = np.logical_or(index[:, 0] == i, index[:, 1] == i)
        f1s[i] = 0.5 * (A**K) * np.sum(1/rij[idx] ** K)
        rhos[i] = (A**M) * sum(1/(rij[idx]) ** M)
    return np.sum(f1s - C * np.sqrt(rhos))
_sda.py 文件源码 项目:sdaopt 作者: sgubianpm 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def gradient(self, x):
        g = np.zeros(x.size, np.float64)
        for i in range(x.size):
            x1 = np.array(x)
            x2 = np.array(x)
            respl = self.reps
            respr = self.reps
            x1[i] = x[i] + respr
            if x1[i] > self.upper[i]:
                x1[i] = self.upper[i]
                respr = x1[i] - x[i]
            x2[i] = x[i] - respl
            if x2[i] < self.lower[i]:
                x2[i] = self.lower[i]
                respl = x[i] - x2[i]
            f1 = self.func_wrapper(x1)
            f2 = self.func_wrapper(x2)
            g[i] = ((f1 - f2)) / (respl + respr)
        idx = np.logical_or(np.isnan(g), np.isinf(g))
        g[idx] = 101.0
        return g
util.py 文件源码 项目:wradlib 作者: wradlib 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _idvalid(data, isinvalid=None, minval=None, maxval=None):
    """Identifies valid entries in an array and returns the corresponding
    indices

    Invalid values are NaN and Inf. Other invalid values can be passed using
    the isinvalid keyword argument.

    Parameters
    ----------
    data : :class:`numpy:numpy.ndarray` of floats
    isinvalid : list of what is considered an invalid value

    """
    if isinvalid is None:
        isinvalid = [-99., 99, -9999., -9999]
    ix = np.ma.masked_invalid(data).mask
    for el in isinvalid:
        ix = np.logical_or(ix, np.ma.masked_where(data == el, data).mask)
    if minval is not None:
        ix = np.logical_or(ix, np.ma.masked_less(data, minval).mask)
    if maxval is not None:
        ix = np.logical_or(ix, np.ma.masked_greater(data, maxval).mask)

    return np.where(np.logical_not(ix))[0]
sculpture_gen.py 文件源码 项目:Simple-User-Input-Sculpture-Generation 作者: ClaireKincaid 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def m_menu(self):
        """Runs the Mathmatically defined sculpture menu item."""
        sin, cos = np.sin, np.cos
        res = raw_input("Enter a functional definition of a volume (x**2+y**2+z**2 < 1) \n")
        self.user_text = res
        self.volume_data = self.bool_ops()
        self.create_iso_surface(.7)

        while True:

            res = raw_input("Enter another functional definition of a volume (x**2+y**2+z**2 < 1) \n")
            self.user_text = res
            self.sec_volume_data = self.bool_ops()
            self.create_iso_surface(.7, second=True)
            res = raw_input("Enter a boolean operation to do with the previous solid (a = and, o = or, n = not, x = xor):\n")
            if res == "a":
                self.sec_volume_data = 0+ np.logical_and(my_sculpture.volume_data, my_sculpture.bool_ops())
            elif res == "o":
                self.sec_volume_data = 0+ np.logical_or(my_sculpture.volume_data, my_sculpture.bool_ops())
            elif res == "n":
                self.sec_volume_data = 0+ np.logical_not(my_sculpture.volume_data, my_sculpture.bool_ops())
            elif res == "x":
                self.sec_volume_data = 0+ np.logical_xor(my_sculpture.volume_data, my_sculpture.bool_ops())
            self.create_iso_surface(.7, second=True)
DataSearch.py 文件源码 项目:qtpandas 作者: draperjames 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def indexSearch(self, indexes):
        """Filters the data by a list of indexes.

        Args:
            indexes (list of int): List of index numbers to return.

        Returns:
            list: A list containing all indexes with filtered data. Matches
            will be `True`, the remaining items will be `False`. If the
            dataFrame is empty, an empty list will be returned.

        """

        if not self._dataFrame.empty:
            filter0 = self._dataFrame.index == -9999
            for index in indexes:
                filter1 = self._dataFrame.index == index
                filter0 = np.logical_or(filter0, filter1)

            return filter0
        else:
            return []
test_umath.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_object_logical(self):
        a = np.array([3, None, True, False, "test", ""], dtype=object)
        assert_equal(np.logical_or(a, None),
                        np.array([x or None for x in a], dtype=object))
        assert_equal(np.logical_or(a, True),
                        np.array([x or True for x in a], dtype=object))
        assert_equal(np.logical_or(a, 12),
                        np.array([x or 12 for x in a], dtype=object))
        assert_equal(np.logical_or(a, "blah"),
                        np.array([x or "blah" for x in a], dtype=object))

        assert_equal(np.logical_and(a, None),
                        np.array([x and None for x in a], dtype=object))
        assert_equal(np.logical_and(a, True),
                        np.array([x and True for x in a], dtype=object))
        assert_equal(np.logical_and(a, 12),
                        np.array([x and 12 for x in a], dtype=object))
        assert_equal(np.logical_and(a, "blah"),
                        np.array([x and "blah" for x in a], dtype=object))

        assert_equal(np.logical_not(a),
                        np.array([not x for x in a], dtype=object))

        assert_equal(np.logical_or.reduce(a), 3)
        assert_equal(np.logical_and.reduce(a), None)
test_ufunc.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
core.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def outer(self, a, b):
        """
        Return the function applied to the outer product of a and b.

        """
        (da, db) = (getdata(a), getdata(b))
        d = self.f.outer(da, db)
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = umath.logical_or.outer(ma, mb)
        if (not m.ndim) and m:
            return masked
        if m is not nomask:
            np.copyto(d, da, where=m)
        if not d.shape:
            return d
        masked_d = d.view(get_masked_subclass(a, b))
        masked_d._mask = m
        return masked_d
mask.py 文件源码 项目:ugali 作者: DarkEnergySurvey 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def simpleMask(config):

    #params = ugali.utils.(config, kwargs)

    roi = ugali.observation.roi.ROI(config)

    # De-project the bin centers to get magnitude depths

    mesh_x, mesh_y = numpy.meshgrid(roi.centers_x, roi.centers_y)
    r = numpy.sqrt(mesh_x**2 + mesh_y**2) # Think about x, y conventions here

    #z = (0. * (r > 1.)) + (21. * (r < 1.))
    #z = 21. - r
    #z = (21. - r) * (mesh_x > 0.) * (mesh_y < 0.)
    z = (21. - r) * numpy.logical_or(mesh_x > 0., mesh_y > 0.)

    return MaskBand(z, roi)

############################################################
oiload.py 文件源码 项目:soif 作者: ceyzeriat 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def loaddata(filename):
    if filename.find(ext)==-1: filename += ext
    data = None
    hdulist = pf.open(filename)
    # extract data hdu per hdu
    for item in hdulist:
        if item.header.get(card)=='DATA':
            if data is None: # first set
                data = Oidata(src=item.header.get('SRC'), flatten=item.header.get('FLATTEN'), degrees=item.header.get('DEGREES'), significant_figures=item.header.get('SIG_FIG'), **{item.header.get('DATATYPE'):item.data})
            else:
                data.addData(src=item.header.get('SRC'), flatten=item.header.get('FLATTEN'), degrees=item.header.get('DEGREES'), significant_figures=item.header.get('SIG_FIG'), **{item.header.get('DATATYPE'):item.data})
    # apply data mode per mode
    for item in hdulist:
        if item.header.get(card)=='DATAMASK':
            theoldmask = getattr(data, item.header.get('DATATYPE')).mask
            if theoldmask.shape != item.data.shape:
                print("Error while applying data mask on "+item.header.get('DATATYPE'))
            else:
                getattr(data, item.header.get('DATATYPE')).mask = np.logical_or(theoldmask, item.data.astype(bool))
    return data
test_umath.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_truth_table_logical(self):
        # 2, 3 and 4 serves as true values
        input1 = [0, 0, 3, 2]
        input2 = [0, 4, 0, 2]

        typecodes = (np.typecodes['AllFloat']
                     + np.typecodes['AllInteger']
                     + '?')     # boolean
        for dtype in map(np.dtype, typecodes):
            arg1 = np.asarray(input1, dtype=dtype)
            arg2 = np.asarray(input2, dtype=dtype)

            # OR
            out = [False, True, True, True]
            for func in (np.logical_or, np.maximum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # AND
            out = [False, False, False, True]
            for func in (np.logical_and, np.minimum):
                assert_equal(func(arg1, arg2).astype(bool), out)
            # XOR
            out = [False, True, True, False]
            for func in (np.logical_xor, np.not_equal):
                assert_equal(func(arg1, arg2).astype(bool), out)
test_ufunc.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_object_logical(self):
        a = np.array([3, None, True, False, "test", ""], dtype=object)
        assert_equal(np.logical_or(a, None),
                        np.array([x or None for x in a], dtype=object))
        assert_equal(np.logical_or(a, True),
                        np.array([x or True for x in a], dtype=object))
        assert_equal(np.logical_or(a, 12),
                        np.array([x or 12 for x in a], dtype=object))
        assert_equal(np.logical_or(a, "blah"),
                        np.array([x or "blah" for x in a], dtype=object))

        assert_equal(np.logical_and(a, None),
                        np.array([x and None for x in a], dtype=object))
        assert_equal(np.logical_and(a, True),
                        np.array([x and True for x in a], dtype=object))
        assert_equal(np.logical_and(a, 12),
                        np.array([x and 12 for x in a], dtype=object))
        assert_equal(np.logical_and(a, "blah"),
                        np.array([x and "blah" for x in a], dtype=object))

        assert_equal(np.logical_not(a),
                        np.array([not x for x in a], dtype=object))

        assert_equal(np.logical_or.reduce(a), 3)
        assert_equal(np.logical_and.reduce(a), None)
test_ufunc.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
core.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def outer(self, a, b):
        """
        Return the function applied to the outer product of a and b.

        """
        (da, db) = (getdata(a), getdata(b))
        d = self.f.outer(da, db)
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = umath.logical_or.outer(ma, mb)
        if (not m.ndim) and m:
            return masked
        if m is not nomask:
            np.copyto(d, da, where=m)
        if not d.shape:
            return d
        masked_d = d.view(get_masked_subclass(a, b))
        masked_d._mask = m
        return masked_d


问题


面经


文章

微信
公众号

扫码关注公众号