python类empty_like()的实例源码

gdal_write_rgb.py 文件源码 项目:mapnik-forest-change-tiles 作者: wri 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def remap_band1(layer_type, date_conf_array, lookup_dict):

    band1_array = np.copy(date_conf_array)

    # Remap the band1_array to reflect int( total_days / 255 )
    if layer_type == 'glad':

        # create an empty array for our offsets
        offset = np.empty_like(band1_array)

        # populate it with the proper offset value depending on band1_array values
        offset[np.logical_and(band1_array >= 20000, band1_array < 30000)] = 20000
        offset[np.logical_and(a >= 30000, a < 40000)] = 30000

        # subtract them to remove the confidence digit (ten thousandths place)
        # and divide by 255
        band1_array = (band1_array - offset) / 255

    else:
        for k, v in lookup_dict.iteritems():
            band1_array[band1_array == k] = v[0]

    return band1_array
pdf.py 文件源码 项目:epsilon_free_inference 作者: gpapamak 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __mul__(self, other):
        """Multiply with a single gaussian."""

        assert isinstance(other, Gaussian)

        ys = [x * other for x in self.xs]

        lcs = np.empty_like(self.a)

        for i, (x, y) in enumerate(izip(self.xs, ys)):

            lcs[i] = x.logdetP + other.logdetP - y.logdetP
            lcs[i] -= np.dot(x.m, np.dot(x.P, x.m)) + np.dot(other.m, np.dot(other.P, other.m)) - np.dot(y.m, np.dot(y.P, y.m))
            lcs[i] *= 0.5

        la = np.log(self.a) + lcs
        la -= scipy.misc.logsumexp(la)
        a = np.exp(la)

        return MoG(a=a, xs=ys)
pdf.py 文件源码 项目:epsilon_free_inference 作者: gpapamak 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __div__(self, other):
        """Divide by a single gaussian."""

        assert isinstance(other, Gaussian)

        ys = [x / other for x in self.xs]

        lcs = np.empty_like(self.a)

        for i, (x, y) in enumerate(izip(self.xs, ys)):

            lcs[i] = x.logdetP - other.logdetP - y.logdetP
            lcs[i] -= np.dot(x.m, np.dot(x.P, x.m)) - np.dot(other.m, np.dot(other.P, other.m)) - np.dot(y.m, np.dot(y.P, y.m))
            lcs[i] *= 0.5

        la = np.log(self.a) + lcs
        la -= scipy.misc.logsumexp(la)
        a = np.exp(la)

        return MoG(a=a, xs=ys)
standardDeviation.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def standardDeviation2d(img, ksize=5, blurred=None):
    '''
    calculate the spatial resolved standard deviation 
    for a given 2d array

    ksize   -> kernel size

    blurred(optional) -> with same ksize gaussian filtered image
                      setting this parameter reduces processing time
    '''
    if ksize not in (list, tuple):
        ksize = (ksize,ksize)

    if blurred is None:
        blurred = gaussian_filter(img, ksize)
    else:
        assert blurred.shape == img.shape

    std = np.empty_like(img)

    _calc(img, ksize[0], ksize[1], blurred, std)

    return std
context_encoder.py 文件源码 项目:Keras-GAN 作者: eriklindernoren 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def mask_randomly(self, imgs):
        y1 = np.random.randint(0, self.img_rows - self.mask_height, imgs.shape[0])
        y2 = y1 + self.mask_height
        x1 = np.random.randint(0, self.img_rows - self.mask_width, imgs.shape[0])
        x2 = x1 + self.mask_width

        masked_imgs = np.empty_like(imgs)
        missing_parts = np.empty((imgs.shape[0], self.mask_height, self.mask_width, self.channels))
        for i, img in enumerate(imgs):
            masked_img = img.copy()
            _y1, _y2, _x1, _x2 = y1[i], y2[i], x1[i], x2[i]
            missing_parts[i] = masked_img[_y1:_y2, _x1:_x2, :].copy()
            masked_img[_y1:_y2, _x1:_x2, :] = 0
            masked_imgs[i] = masked_img

        return masked_imgs, missing_parts, (y1, y2, x1, x2)
pdfs.py 文件源码 项目:maf 作者: gpapamak 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __mul__(self, other):
        """Multiply with a single gaussian."""

        assert isinstance(other, Gaussian)

        ys = [x * other for x in self.xs]

        lcs = np.empty_like(self.a)

        for i, (x, y) in enumerate(izip(self.xs, ys)):

            lcs[i] = x.logdetP + other.logdetP - y.logdetP
            lcs[i] -= np.dot(x.m, np.dot(x.P, x.m)) + np.dot(other.m, np.dot(other.P, other.m)) - np.dot(y.m, np.dot(y.P, y.m))
            lcs[i] *= 0.5

        la = np.log(self.a) + lcs
        la -= scipy.misc.logsumexp(la)
        a = np.exp(la)

        return MoG(a=a, xs=ys)
pdfs.py 文件源码 项目:maf 作者: gpapamak 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __div__(self, other):
        """Divide by a single gaussian."""

        assert isinstance(other, Gaussian)

        ys = [x / other for x in self.xs]

        lcs = np.empty_like(self.a)

        for i, (x, y) in enumerate(izip(self.xs, ys)):

            lcs[i] = x.logdetP - other.logdetP - y.logdetP
            lcs[i] -= np.dot(x.m, np.dot(x.P, x.m)) - np.dot(other.m, np.dot(other.P, other.m)) - np.dot(y.m, np.dot(y.P, y.m))
            lcs[i] *= 0.5

        la = np.log(self.a) + lcs
        la -= scipy.misc.logsumexp(la)
        a = np.exp(la)

        return MoG(a=a, xs=ys)
frame.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _apply_broadcast(self, func, axis):
        if axis == 0:
            target = self
        elif axis == 1:
            target = self.T
        else:  # pragma: no cover
            raise AssertionError('Axis must be 0 or 1, got %s' % axis)

        result_values = np.empty_like(target.values)
        columns = target.columns
        for i, col in enumerate(columns):
            result_values[:, i] = func(target[col])

        result = self._constructor(result_values, index=target.index,
                                   columns=target.columns)

        if axis == 1:
            result = result.T

        return result
dcm.py 文件源码 项目:pyins 作者: nmayorov 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _from_rotvec_array(rv):
    norm = np.linalg.norm(rv, axis=1)
    norm2 = norm ** 2
    norm4 = norm2 ** 2

    k1 = np.empty_like(norm2)
    k2 = np.empty_like(norm2)

    small = norm2 < 1e-6
    k1[small] = 1 - norm2[small] / 6 + norm4[small] / 120
    k2[small] = 0.5 - norm2[small] / 24 + norm4[small] / 720

    big = ~small
    k1[big] = np.sin(norm[big]) / norm[big]
    k2[big] = (1 - np.cos(norm[big])) / norm2[big]

    skew = _skew_matrix_array(rv)
    skew_squared = np.einsum('...ij,...jk->...ik', skew, skew)
    identity = np.empty_like(skew)
    identity[:] = np.identity(3)
    return (identity +
            k1[:, np.newaxis, np.newaxis] * skew +
            k2[:, np.newaxis, np.newaxis] * skew_squared)
dcm.py 文件源码 项目:pyins 作者: nmayorov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _dtheta_from_omega_matrix(theta):
    norm = np.linalg.norm(theta, axis=1)
    k = np.empty_like(norm)

    mask = norm > 1e-4
    nm = norm[mask]
    k[mask] = (1 - 0.5 * nm / np.tan(0.5 * nm)) / nm**2
    mask = ~mask
    nm = norm[mask]
    k[mask] = 1/12 + 1/720 * nm**2

    A = np.empty((norm.shape[0], 3, 3))
    skew = _skew_matrix_array(theta)
    A[:] = np.identity(3)
    A[:] += 0.5 * skew
    A[:] += k[:, None, None] * util.mm_prod(skew, skew)

    return A
dcm.py 文件源码 项目:pyins 作者: nmayorov 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _omega_from_dtheta_matrix(theta):
    norm = np.linalg.norm(theta, axis=1)
    k1 = np.empty_like(norm)
    k2 = np.empty_like(norm)

    mask = norm > 1e-4
    nm = norm[mask]
    k1[mask] = (1 - np.cos(nm)) / nm**2
    k2[mask] = (nm - np.sin(nm)) / nm**3

    mask = ~mask
    nm = norm[mask]
    k1[mask] = 0.5 - nm**2 / 24
    k2[mask] = 1/6 - nm**2 / 120

    A = np.empty((norm.shape[0], 3, 3))
    skew = _skew_matrix_array(theta)
    A[:] = np.identity(3)
    A[:] -= k1[:, None, None] * skew
    A[:] += k2[:, None, None] * util.mm_prod(skew, skew)

    return A
test_integrate.py 文件源码 项目:pyins 作者: nmayorov 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_coning_sculling():
    # Basically a smoke test, because the function is quite simple.
    gyro = np.zeros((10, 3))
    gyro[:, 0] = 0.01
    gyro[:, 2] = -0.01

    accel = np.zeros((10, 3))
    accel[:, 2] = 0.1

    dv_true = np.empty_like(accel)
    dv_true[:, 0] = 0
    dv_true[:, 1] = -0.5e-3
    dv_true[:, 2] = 0.1
    theta, dv = coning_sculling(gyro, accel)
    assert_allclose(theta, gyro, rtol=1e-10)
    assert_allclose(dv, dv_true, rtol=1e-10)
poisson_vec.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def residual(r,theta,u,d):
    out = np.empty_like(u)
    out[0] = (2*np.sin(theta)*r*d(u[0],1,0)
              + r*r*np.sin(theta)*d(u[0],2,0)
              + np.cos(theta)*d(u[0],0,1)
              + np.sin(theta)*d(u[1],0,2))
    out[1] = (2*np.sin(theta)*r*d(u[1],1,0)
              + r*r*np.sin(theta)*d(u[1],2,0)
              + np.cos(theta)*d(u[1],0,1)
              + np.sin(theta)*d(u[1],0,2))
    return out
elliptic.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def DEFAULT_BDRY_THETA_MIN(r,u,d):
    ushape = u.shape
    num_vars = np.prod(ushape[:-2])
    uflat = u.reshape(tuple([num_vars])+ushape[-2:])
    out = np.empty_like(uflat)
    for i in range(out.shape[0]):
        out[i] = d(uflat[i],0,1)
    out.reshape(ushape)
    return out
elliptic.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def DEFAULT_BDRY_THETA_MAX(r,u,d):
    ushape = u.shape
    num_vars = np.prod(ushape[:-2])
    uflat = u.reshape(tuple([num_vars])+ushape[-2:])
    out = np.empty_like(uflat)
    for i in range(out.shape[0]):
        out[i] = d(uflat[i],0,1)
    out.reshape(ushape)
    return out
hiv.py 文件源码 项目:hip-mdp-public 作者: dtak 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def dsdt(t, s, params):
    """Wrapper for system derivative with respect to time"""
    derivs = np.empty_like(s)
    eps1,eps2,perturb_params,p_lambda1,p_lambda2,p_k1,p_k2,p_f,p_m1,p_m2,p_lambdaE,p_bE,p_Kb,p_d_E,p_Kd = params 
    dsdt_(derivs, s, t, eps1, eps2, perturb_params, p_lambda1, p_lambda2, p_k1, \
    p_k2, p_f, p_m1, p_m2, p_lambdaE, p_bE, p_Kb, p_d_E, p_Kd)
    return derivs
acrobot.py 文件源码 项目:hip-mdp-public 作者: dtak 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def dsdt(self, s_augmented, t):
        derivs = np.empty_like(s_augmented)
        self._dsdt(derivs, s_augmented, t)
        return derivs
log_loss_weighted.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def log_loss_value_from_scores(weights, total_weights, scores):
    """
    computes the logistic loss value from a vector of scores in a numerically stable way
    where scores = Z.dot(rho)

    see also: http://stackoverflow.com/questions/20085768/

    this function is used for heuristics (discrete_descent, sequential_rounding).
    to save computation when running the heuristics, we store the scores and
    call this function to compute the loss directly from the scores
    this reduces the need to recompute the dot product.

    Parameters
    ----------
    scores          numpy.array of scores = Z.dot(rho)
    total_weights   numpy.sum(total_weights) (only included to reduce computation)
    weights         numpy.array of sample weights with shape (n_rows,)

    Returns
    -------
    loss_value  scalar = 1/n_rows * sum(log( 1 .+ exp(-Z*rho))

    """
    pos_idx = scores > 0
    loss_value = np.empty_like(scores)
    loss_value[pos_idx] = np.log1p(np.exp(-scores[pos_idx]))
    loss_value[~pos_idx] = -scores[~pos_idx] + np.log1p(np.exp(scores[~pos_idx]))
    loss_value = loss_value.dot(weights) / total_weights

    return loss_value
log_loss.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def log_loss_value_and_slope(Z, rho):
    """
    computes the value and slope of the logistic loss in a numerically stable way
    this function should only be used when generating cuts in cutting-plane algorithms
    (computing both the value and the slope at the same time is slightly cheaper)

    see also: http://stackoverflow.com/questions/20085768/

    Parameters
    ----------
    Z           numpy.array containing training data with shape = (n_rows, n_cols)
    rho         numpy.array of coefficients with shape = (n_cols,)

    Returns
    -------
    loss_value  scalar = 1/n_rows * sum(log( 1 .+ exp(-Z*rho))
    loss_slope: (n_cols x 1) vector = 1/n_rows * sum(-Z*rho ./ (1+exp(-Z*rho))

    """
    scores = Z.dot(rho)
    pos_idx = scores > 0
    exp_scores_pos = np.exp(-scores[pos_idx])
    exp_scores_neg = np.exp(scores[~pos_idx])

    #compute loss value
    loss_value = np.empty_like(scores)
    loss_value[pos_idx] = np.log1p(exp_scores_pos)
    loss_value[~pos_idx] = -scores[~pos_idx] + np.log1p(exp_scores_neg)
    loss_value = loss_value.mean()

    #compute loss slope
    log_probs = np.empty_like(scores)
    log_probs[pos_idx]  = 1.0 / (1.0 + exp_scores_pos)
    log_probs[~pos_idx] = exp_scores_neg / (1.0 + exp_scores_neg)
    loss_slope = Z.T.dot(log_probs - 1.0) / Z.shape[0]

    return loss_value, loss_slope
no_numba.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _ecdf_formal(x, data):
    """
    Compute the values of the formal ECDF generated from `data` at x.
    I.e., if F is the ECDF, return F(x).

    Parameters
    ----------
    x : array_like
        Positions at which the formal ECDF is to be evaluated.
    data : array_like
        *Sorted* data set to use to generate the ECDF.

    Returns
    -------
    output : float or ndarray
        Value of the ECDF at `x`.
    """
    output = np.empty_like(x)

    for i, x_val in enumerate(x):
        j = 0
        while j < len(data) and x_val >= data[j]:
            j += 1

        output[i] = j

    return output / len(data)


问题


面经


文章

微信
公众号

扫码关注公众号