python类cov()的实例源码

inverse_covariance.py 文件源码 项目:skggm 作者: skggm 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _init_coefs(X, method='corrcoef'):
    if method == 'corrcoef':
        return np.corrcoef(X, rowvar=False), 1.0
    elif method == 'cov':
        init_cov = np.cov(X, rowvar=False)
        return init_cov, np.max(np.abs(np.triu(init_cov)))
    elif method == 'spearman':
        return spearman_correlation(X, rowvar=False), 1.0
    elif method == 'kendalltau':
        return kendalltau_correlation(X, rowvar=False), 1.0
    elif callable(method):
        return method(X)
    else:
        raise ValueError(
            ("initialize_method must be 'corrcoef' or 'cov', "
             "passed \'{}\' .".format(method))
        )
fisher_iris_visualization.py 文件源码 项目:blender-scripting 作者: njanakiev 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def PCA(data, num_components=None):
    # mean center the data
    data -= data.mean(axis=0)
    # calculate the covariance matrix
    R = np.cov(data, rowvar=False)
    # calculate eigenvectors & eigenvalues of the covariance matrix
    # use 'eigh' rather than 'eig' since R is symmetric,
    # the performance gain is substantial
    V, E = np.linalg.eigh(R)
    # sort eigenvalue in decreasing order
    idx = np.argsort(V)[::-1]
    E = E[:,idx]
    # sort eigenvectors according to same index
    V = V[idx]
    # select the first n eigenvectors (n is desired dimension
    # of rescaled data array, or dims_rescaled_data)
    E = E[:, :num_components]
    # carry out the transformation on the data using eigenvectors
    # and return the re-scaled data, eigenvalues, and eigenvectors
    return np.dot(E.T, data.T).T, V, E
cumulative.py 文件源码 项目:zipline-chinese 作者: zhanghan1990 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def calculate_beta(self):
        """

        .. math::

            \\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)}

        http://en.wikipedia.org/wiki/Beta_(finance)
        """
        # it doesn't make much sense to calculate beta for less than two
        # values, so return none.
        if len(self.algorithm_returns) < 2:
            return 0.0

        returns_matrix = np.vstack([self.algorithm_returns,
                                    self.benchmark_returns])
        C = np.cov(returns_matrix, ddof=1)
        algorithm_covariance = C[0][1]
        benchmark_variance = C[1][1]
        beta = algorithm_covariance / benchmark_variance

        return beta
util.py 文件源码 项目:fluxpart 作者: usda-ars-ussl 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def stats2(sarray, names=None):
    """Calculate means and (co)variances for structured array data."""

    if names is None:
        names = sarray.dtype.names
    nvar = len(names)
    data = tuple(sarray[name] for name in names)
    cov = np.cov(data)
    nondiag_cov = list(cov[i, j] for i, j in permutations(range(nvar), 2))

    names_ave = list('ave_' + name for name in names)
    names_var = list('var_' + name for name in names)
    names_cov = list(
        'cov_' + n1 + "_" + n2 for n1, n2 in permutations(names, 2))

    out = dict(zip(names_ave, np.mean(data, axis=1)))
    out.update(zip(names_var, cov.diagonal()))
    out.update(zip(names_cov, nondiag_cov))

    NamedStats = namedtuple('Stats2', names_ave + names_var + names_cov)
    return NamedStats(**out)
crowd_model.py 文件源码 项目:code-uai16 作者: thanhan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def eval_F(list_data, worker, mu, C, W):
        """
        F = log N(T, mu, C) + SUM q() log Ber(L_ij | T)
        list_il can be from different datasets:
        list_il = list: each elem is a list from a dataset
        """    

        res = scipy.stats.multivariate_normal.logpdf(W, mean = mu, cov = C, allow_singular = True)

        for dt, data in enumerate(list_data):
            # dataset dt: sen = W[2*dt], fpr = W[2*dt+1]
            sen, fpr = W[2*dt], W[2*dt+1]
            if worker in data.dic_wl:
             for (item, label) in data.dic_wl[worker]:
                # prob of being 1
                qz = data.qz[item]
                res += qz     * np.log( Ber(S(sen), label) )
                #res += qz     * ( label*np.log(S(sen)) + (1-label)*np.log(S(sen))  )
                res += (1-qz) * np.log( Ber(S(fpr), label) )


        return res
crowd_model.py 文件源码 项目:code-uai16 作者: thanhan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def expectation_binorm(rv, mu, var, x, M, C, w = 3):
    """
    Evaluate the expectation of log Norm(uv| M, C)
         x = u, v ~ Norm(mu, var) rv == 'v'
         x = v, u ~ Norm(mu, var) rv == 'u'
    """
    #print rv, mu, var, x, M, C
    if rv == 'v':
      f = lambda v: scipy.stats.norm.pdf(v, loc = mu, scale = np.sqrt(var) ) * \
        np.log(scipy.stats.multivariate_normal.pdf([x, v], mean = M, cov = C, allow_singular = True))
    else:
      f = lambda u: scipy.stats.norm.pdf(u, loc = mu, scale = np.sqrt(var) ) * \
        np.log(scipy.stats.multivariate_normal.pdf([u, x], mean = M, cov = C, allow_singular = True))

    #return f
    #print f(mu)
    std = np.sqrt(var)
    return scipy.integrate.quad(f, mu - w*std, mu + w*std)[0]
gzoo.py 文件源码 项目:code-uai16 作者: thanhan 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def measure_correlation(gold0, gold1, l = 10, pos = 0, list_w = []):

    a = []
    b = []

    for w in gold0.keys():
      if w in gold1 and (w in list_w or list_w == []):
        if gold0[w][0] != None and gold1[w][0] != None:
          if gold0[w][2] > l and gold1[w][2] > l:
              if pos == 0:
                  a.append(logit(gold0[w][pos]))
                  b.append(logit(gold1[w][pos]))
              else:
                  a.append(logit(1 - gold0[w][pos]))
                  b.append(logit(1 - gold1[w][pos]))


    print len(a), np.mean(a), np.mean(b)
    return np.cov(a,b)
linear_time.py 文件源码 项目:kernel_goodness_of_fit 作者: karlnapf 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def mahalanobis_distance(difference, num_random_features):
    num_samples, _ = np.shape(difference)
    sigma = np.cov(np.transpose(difference))

    mu = np.mean(difference, 0)

    if num_random_features == 1:
        stat = float(num_samples * mu ** 2) / float(sigma)
    else:
        try:
            linalg.inv(sigma)
        except LinAlgError:
            print('covariance matrix is singular. Pvalue returned is 1.1')
            warnings.warn('covariance matrix is singular. Pvalue returned is 1.1')
            return 0
        stat = num_samples * mu.dot(linalg.solve(sigma, np.transpose(mu)))

    return chi2.sf(stat, num_random_features)
no_numba.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def heritability(parents, offspring):
    """
    Compute the heritability from parent and offspring samples.

    Parameters
    ----------
    parents : array_like
        Array of data for trait of parents.
    offspring : array_like
        Array of data for trait of offspring.

    Returns
    -------
    output : float
        Heritability of trait.
    """
    par, off = _convert_two_data(parents, offspring)
    covariance_matrix = np.cov(par, off)
    return covariance_matrix[0,1] / covariance_matrix[0,0]
dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def heritability(parents, offspring):
    """
    Compute the heritability from parent and offspring samples.

    Parameters
    ----------
    parents : array_like
        Array of data for trait of parents.
    offspring : array_like
        Array of data for trait of offspring.

    Returns
    -------
    output : float
        Heritability of trait.
    """
    par, off = _convert_two_data(parents, offspring)
    covariance_matrix = np.cov(par, off)
    return covariance_matrix[0,1] / covariance_matrix[0,0]
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_1d_w_missing(self):
        # Test cov 1 1D variable w/missing values
        x = self.data
        x[-1] = masked
        x -= x.mean()
        nx = x.compressed()
        assert_almost_equal(np.cov(nx), cov(x))
        assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
        assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
                            cov(x, rowvar=False, bias=True))
        #
        try:
            cov(x, allow_masked=False)
        except ValueError:
            pass
        #
        # 2 1D variables w/ missing values
        nx = x[1:-1]
        assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
        assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
                            cov(x, x[::-1], rowvar=False))
        assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
                            cov(x, x[::-1], rowvar=False, bias=True))
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test cov on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)
        valid = np.logical_not(getmaskarray(x)).astype(int)
        frac = np.dot(valid, valid.T)
        xf = (x - x.mean(1)[:, None]).filled(0)
        assert_almost_equal(cov(x),
                            np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
        assert_almost_equal(cov(x, bias=True),
                            np.cov(xf, bias=True) * x.shape[1] / frac)
        frac = np.dot(valid.T, valid)
        xf = (x - x.mean(0)).filled(0)
        assert_almost_equal(cov(x, rowvar=False),
                            (np.cov(xf, rowvar=False) *
                             (x.shape[0] - 1) / (frac - 1.)))
        assert_almost_equal(cov(x, rowvar=False, bias=True),
                            (np.cov(xf, rowvar=False, bias=True) *
                             x.shape[0] / frac))
test_multivariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_shape_inference(self):
        with self.test_session(use_gpu=True):
            # Static
            mean = 10 * np.random.normal(size=(10, 11, 2)).astype('d')
            cov = np.zeros((10, 11, 2, 2))
            dst = MultivariateNormalCholesky(
                tf.constant(mean), tf.constant(cov))
            self.assertEqual(dst.get_batch_shape().as_list(), [10, 11])
            self.assertEqual(dst.get_value_shape().as_list(), [2])
            # Dynamic
            unk_mean = tf.placeholder(tf.float32, None)
            unk_cov = tf.placeholder(tf.float32, None)
            dst = MultivariateNormalCholesky(unk_mean, unk_cov)
            self.assertEqual(dst.get_value_shape().as_list(), [None])
            feed_dict = {unk_mean: np.ones(2), unk_cov: np.eye(2)}
            self.assertEqual(list(dst.batch_shape.eval(feed_dict)), [])
            self.assertEqual(list(dst.value_shape.eval(feed_dict)), [2])
test_multivariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_sample(self):
        with self.fixed_randomness_session(233):
            def test_sample_with(seed):
                mean, cov, cov_chol = self._gen_test_params(seed)
                dst = MultivariateNormalCholesky(
                    tf.constant(mean), tf.constant(cov_chol))
                n_exp = 20000
                samples = dst.sample(n_exp)
                sample_shape = (n_exp, 10, 11, 3)
                self.assertEqual(samples.shape.as_list(), list(sample_shape))
                samples = dst.sample(n_exp).eval()
                self.assertEqual(samples.shape, sample_shape)
                self.assertAllClose(
                    np.mean(samples, axis=0), mean, rtol=5e-2, atol=5e-2)
                for i in range(10):
                    for j in range(11):
                        self.assertAllClose(
                            np.cov(samples[:, i, j, :].T), cov[i, j],
                            rtol=1e-1, atol=1e-1)

            for seed in [23, 233, 2333]:
                test_sample_with(seed)
test_multivariate.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_prob(self):
        with self.fixed_randomness_session(233):
            def test_prob_with(seed):
                mean, cov, cov_chol = self._gen_test_params(seed)
                dst = MultivariateNormalCholesky(
                    tf.constant(mean), tf.constant(cov_chol),
                    check_numerics=True)
                n_exp = 200
                samples = dst.sample(n_exp).eval()
                log_pdf = dst.log_prob(tf.constant(samples))
                pdf_shape = (n_exp, 10, 11)
                self.assertEqual(log_pdf.shape.as_list(), list(pdf_shape))
                log_pdf = log_pdf.eval()
                self.assertEqual(log_pdf.shape, pdf_shape)
                for i in range(10):
                    for j in range(11):
                        log_pdf_exact = stats.multivariate_normal.logpdf(
                                samples[:, i, j, :], mean[i, j], cov[i, j])
                        self.assertAllClose(
                            log_pdf_exact, log_pdf[:, i, j])
                self.assertAllClose(
                    np.exp(log_pdf), dst.prob(tf.constant(samples)).eval())

            for seed in [23, 233, 2333]:
                test_prob_with(seed)
ROI_cov_Qu_SigmaJ.py 文件源码 项目:MEEG_connectivity 作者: YingYang 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def get_neg_log_post(Phi, sigma_J_list, ROI_list, G, MMT, q, Sigma_E,  GL,
                     nu, V, prior_on = False):
    eps = 1E-13
    p = Phi.shape[0]
    n_ROI = len(sigma_J_list)
    Qu = Phi.dot(Phi.T)
    G_Sigma_G = np.zeros(MMT.shape)
    for i in range(n_ROI):
        G_Sigma_G += sigma_J_list[i]**2 * np.dot(G[:,ROI_list[i]], G[:,ROI_list[i]].T)
    cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) 
    inv_cov = np.linalg.inv(cov)    
    eigs = np.real(np.linalg.eigvals(cov)) + eps
    log_det_cov = np.sum(np.log(eigs))  
    result = q*log_det_cov + np.trace(MMT.dot(inv_cov))
    if prior_on:
        inv_Q = np.linalg.inv(Qu)
        #det_Q = np.linalg.det(Qu)
        log_det_Q = np.sum(np.log(np.diag(Phi)**2))
        result =  result + np.float(nu+p+1)*log_det_Q+ np.trace(V.dot(inv_Q))
    return result

#==============================================================================
# update both Qu and Sigma_J, gradient of Qu and Sigma J
ROI_cov_Qu_SigmaJ.py 文件源码 项目:MEEG_connectivity 作者: YingYang 项目源码 文件源码 阅读 79 收藏 0 点赞 0 评论 0
def get_neg_log_post(Phi, sigma_J_list, ROI_list, G, MMT, q, Sigma_E,  GL,
                     nu, V, prior_on = False):
    eps = 1E-13
    p = Phi.shape[0]
    n_ROI = len(sigma_J_list)
    Qu = Phi.dot(Phi.T)
    G_Sigma_G = np.zeros(MMT.shape)
    for i in range(n_ROI):
        G_Sigma_G += sigma_J_list[i]**2 * np.dot(G[:,ROI_list[i]], G[:,ROI_list[i]].T)
    cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) 
    inv_cov = np.linalg.inv(cov)    
    eigs = np.real(np.linalg.eigvals(cov)) + eps
    log_det_cov = np.sum(np.log(eigs))  
    result = q*log_det_cov + np.trace(MMT.dot(inv_cov))
    if prior_on:
        inv_Q = np.linalg.inv(Qu)
        #det_Q = np.linalg.det(Qu)
        log_det_Q = np.sum(np.log(np.diag(Phi)**2))
        result =  result + np.float(nu+p+1)*log_det_Q+ np.trace(V.dot(inv_Q))
    return result

#==============================================================================
# update both Qu and Sigma_J, gradient of Qu and Sigma J
hotelling.py 文件源码 项目:pyspc 作者: carlosqsilva 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot(self, data, size, newdata=None):

        data = np.array(data)
        numsample = len(data)

        colmean = np.mean(data, axis=0)
        matcov = np.cov(data.T)
        matinv = np.linalg.inv(matcov)

        values = []
        for sample in data:
            dif = sample - colmean
            value = matinv.dot(dif.T).dot(dif)
            values.append(value)

        cl = ((numsample - 1)**2) / numsample
        lcl = cl * beta.ppf(0.00135, size / 2, (numsample - size - 1) / 2)
        center = cl * beta.ppf(0.5, size / 2, (numsample - size - 1) / 2)
        ucl = cl * beta.ppf(0.99865, size / 2, (numsample - size - 1) / 2)

        return (values, center, lcl, ucl, self._title)
plot_gradients.py 文件源码 项目:IDNNs 作者: ravidziv 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def calc_mean_var_loss(epochsInds,loss_train):
    #Loss train is in dimension # epochs X #batchs
    num_of_epochs = loss_train.shape[0]
    #Average over the batchs
    loss_train_mean = np.mean(loss_train,1)
    #The diff divided by the sampled indexes
    d_mean_loss_to_dt = np.sqrt(np.abs(np.diff(loss_train_mean) / np.diff(epochsInds[:])))
    var_loss = []
    #Go over the epochs
    for epoch_index in range(num_of_epochs):
        #The loss for the specpic epoch
        current_loss = loss_train[epoch_index, :]
        #The derivative between the batchs
        current_loss_dt = np.diff(current_loss)
        #The mean of his derivative
        average_loss = np.mean(current_loss_dt)
        current_loss_minus_mean = current_loss_dt- average_loss
        #The covarince between the batchs
        cov_mat = np.dot(current_loss_minus_mean[:, None], current_loss_minus_mean[None, :])
        # The trace of the cov matrix
        trac_cov = np.trace(cov_mat)
        var_loss.append(trac_cov)
    return np.array(var_loss), d_mean_loss_to_dt
util.py 文件源码 项目:chainer-neural-style 作者: dsanno 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def match_color_histogram(x, y):
    z = np.zeros_like(x)
    shape = x[0].shape
    for i in six.moves.range(len(x)):
        a = x[i].reshape((3, -1))
        a_mean = np.mean(a, axis=1, keepdims=True)
        a_var = np.cov(a)
        d, v = np.linalg.eig(a_var)
        d += 1e-6
        a_sigma_inv = v.dot(np.diag(d ** (-0.5))).dot(v.T)

        b = y[i].reshape((3, -1))
        b_mean = np.mean(b, axis=1, keepdims=True)
        b_var = np.cov(b)
        d, v = np.linalg.eig(b_var)
        b_sigma = v.dot(np.diag(d ** 0.5)).dot(v.T)

        transform = b_sigma.dot(a_sigma_inv)
        z[i,:] = (transform.dot(a - a_mean) + b_mean).reshape(shape)
    return z
clf.py 文件源码 项目:pylibs 作者: skesiraju 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def compute_cmus_scov(self, data, labels):
        """ Compute class means and shared covariance
        (weighted within-class covariance) """

        self.label_map, class_sizes = np.unique(labels, return_counts=True)
        dim = data.shape[1]

        cmus = np.zeros(shape=(len(class_sizes), dim))
        acc = np.zeros(shape=(dim, dim))
        scov = np.zeros_like(acc)

        gl_mu = np.mean(data, axis=0).reshape(-1, 1)
        gl_cov = np.cov(data.T, bias=True)

        for i, k in enumerate(self.label_map):
            data_k = data[np.where(labels == k)[0], :]
            mu_k = np.mean(data_k, axis=0).reshape(-1, 1)
            cmus[i, :] = mu_k[:, 0]
            acc += (gl_mu - mu_k).dot((gl_mu - mu_k).T) * data_k.shape[0]

        acc /= data.shape[0]
        scov = gl_cov - acc

        return cmus, scov, class_sizes
alignMajor.py 文件源码 项目:pytorch_fnet 作者: AllenCellModeling 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_major_minor_axis(img):
    """
    Finds the major and minor axis as 3d vectors of the passed in image
    :param img: CZYX numpy array
    :return: tuple containing two numpy arrays representing the major and minor axis as 3d vectors
    """
    # do a mean projection if more than 3 axes
    if img.ndim > 3:
        z, y, x = np.nonzero(np.mean(img, axis=tuple(range(img.ndim - 3))))
    else:
        z, y, x = np.nonzero(img)
    coords = np.stack([x - np.mean(x), y - np.mean(y), z - np.mean(z)])
    # eigenvectors and values of the covariance matrix
    evals, evecs = np.linalg.eig(np.cov(coords))
    # return largest and smallest eigenvectors (major and minor axis)
    order = np.argsort(evals)
    return (evecs[:, order[-1]], evecs[:, order[0]])
output.py 文件源码 项目:abcpy 作者: eth-cscs 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def posterior_cov(self):
        """
        Computes posterior covariance from the samples drawn from posterior distribution

        Returns
        -------
        np.ndarray
            posterior covariance        
        """
        endp = len(self.parameters) - 1
        endw = len(self.weights) - 1

        params = self.parameters[endp]
        weights = self.weights[endw]

        return np.cov(np.transpose(params), aweights = weights.reshape(len(weights),))
test_extras.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_1d_w_missing(self):
        # Test cov 1 1D variable w/missing values
        x = self.data
        x[-1] = masked
        x -= x.mean()
        nx = x.compressed()
        assert_almost_equal(np.cov(nx), cov(x))
        assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
        assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
                            cov(x, rowvar=False, bias=True))
        #
        try:
            cov(x, allow_masked=False)
        except ValueError:
            pass
        #
        # 2 1D variables w/ missing values
        nx = x[1:-1]
        assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
        assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
                            cov(x, x[::-1], rowvar=False))
        assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
                            cov(x, x[::-1], rowvar=False, bias=True))
test_extras.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test cov on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)
        valid = np.logical_not(getmaskarray(x)).astype(int)
        frac = np.dot(valid, valid.T)
        xf = (x - x.mean(1)[:, None]).filled(0)
        assert_almost_equal(cov(x),
                            np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
        assert_almost_equal(cov(x, bias=True),
                            np.cov(xf, bias=True) * x.shape[1] / frac)
        frac = np.dot(valid.T, valid)
        xf = (x - x.mean(0)).filled(0)
        assert_almost_equal(cov(x, rowvar=False),
                            (np.cov(xf, rowvar=False) *
                             (x.shape[0] - 1) / (frac - 1.)))
        assert_almost_equal(cov(x, rowvar=False, bias=True),
                            (np.cov(xf, rowvar=False, bias=True) *
                             x.shape[0] / frac))
inverse_covariance.py 文件源码 项目:skggm 作者: skggm 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, score_metric='log_likelihood', init_method='cov',
                 auto_scale=True):
        self.score_metric = score_metric
        self.init_method = init_method
        self.auto_scale = auto_scale

        self.covariance_ = None  # assumes a matrix of a list of matrices
        self.precision_ = None  # assumes a matrix of a list of matrices

        # these must be updated upon self.fit()
        # the first 4 will be set if self.init_coefs is used.
        #   self.sample_covariance_
        #   self.lam_scale_
        #   self.n_samples
        #   self.n_features
        self.is_fitted = False

        super(InverseCovarianceEstimator, self).__init__()
gaussianmixture.py 文件源码 项目:ML-lib 作者: christopherjenness 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _maximization(self):
        # Maximize priors
        priors = sum(self.responsibility_matrix)
        priors = [float(i)/sum(priors) for i in priors]

        # Maximize means
        mus = [0 for i in range(self.c)]
        for k in range(self.c):
            mus_k = sum(np.multiply(self.samples,
                                    self.responsibility_matrix[:, k][:, np.newaxis]))
            normalized_mus_k = mus_k / sum(self.responsibility_matrix[:, k])
            mus[k] = normalized_mus_k

        # Maximize covariances
        covs = [0 for i in range(self.c)]
        for k in range(self.c):
            covs[k] = np.cov(self.samples.T,
                             aweights=self.responsibility_matrix[:, k])

        return priors, mus, covs
test_plot_error.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_plot_error_ellipse(self):
        # Generate random data
        x = np.random.normal(0, 1, 300)
        s = np.array([2.0, 2.0])
        y1 = np.random.normal(s[0] * x)
        y2 = np.random.normal(s[1] * x)
        data = np.array([y1, y2])

        # Calculate covariance and plot error ellipse
        cov = np.cov(data)
        plot_error_ellipse([0.0, 0.0], cov)

        debug = False
        if debug:
            plt.scatter(data[0, :], data[1, :])
            plt.xlim([-8, 8])
            plt.ylim([-8, 8])
            plt.show()
        plt.clf()
test_hmc.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_mean_cov(self):
        with self.test_context():
            self.m.compile()
            num_samples = 1000
            samples = self.hmc.sample(self.m, num_samples=num_samples,
                                      lmin=10, lmax=21, epsilon=0.05)
            self.assertEqual(samples.shape, (num_samples, 2))
            xs = np.array(samples[self.m.x.full_name].tolist(), dtype=np.float32)
            mean = xs.mean(0)
            cov = np.cov(xs.T)
            cov_standard = np.eye(cov.shape[0])

            # TODO(@awav): inspite of the fact that we set up graph's random seed,
            # the operation seed is still assigned by tensorflow automatically
            # and hence sample output numbers are not deterministic.
            #
            # self.assertTrue(np.sum(np.abs(mean) < 0.1) >= mean.size/2)
            # assert_allclose(cov, cov_standard, rtol=1e-1, atol=1e-1)
hmm.py 文件源码 项目:NetPower_TestBed 作者: Vignesh2208 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _init(self, X, lengths=None):
        super(GaussianHMM, self)._init(X, lengths=lengths)

        _, n_features = X.shape
        if hasattr(self, 'n_features') and self.n_features != n_features:
            raise ValueError('Unexpected number of dimensions, got %s but '
                             'expected %s' % (n_features, self.n_features))

        self.n_features = n_features
        if 'm' in self.init_params or not hasattr(self, "means_"):
            kmeans = cluster.KMeans(n_clusters=self.n_components,
                                    random_state=self.random_state)
            kmeans.fit(X)
            self.means_ = kmeans.cluster_centers_
        if 'c' in self.init_params or not hasattr(self, "covars_"):
            cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1])
            if not cv.shape:
                cv.shape = (1, 1)
            self._covars_ = distribute_covar_matrix_to_match_covariance_type(
                cv, self.covariance_type, self.n_components).copy()


问题


面经


文章

微信
公众号

扫码关注公众号