python类bincount()的实例源码

reader.py 文件源码 项目:variational-text-tensorflow 作者: carpedm20 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def onehot(self, data, min_length=None):
    if min_length == None:
      min_length = self.vocab_size
    return np.bincount(data, minlength=min_length)
util_test.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_sample_from_probs2_gof(size):
    set_random_seed(size)
    probs = np.exp(2 * np.random.random(size)).astype(np.float32)
    counts = np.zeros(size, dtype=np.int32)
    num_samples = 2000 * size
    probs2 = np.tile(probs, (num_samples, 1))
    samples = sample_from_probs2(probs2)
    probs /= probs.sum()  # Normalize afterwards.
    counts = np.bincount(samples, minlength=size)
    print(counts)
    print(probs * num_samples)
    gof = multinomial_goodness_of_fit(probs, counts, num_samples, plot=True)
    assert 1e-2 < gof
training.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def count_pairs(assignments, v1, v2, M):
    """Construct sufficient statistics for (v1, v2) pairs.

    Args:
        assignments: An _ x V assignment matrix with values in range(M).
        v1, v2: Column ids of the assignments matrix.
        M: The number of possible assignment bins.

    Returns:
        An M x M array of counts.
    """
    assert v1 != v2
    pairs = assignments[:, v1].astype(np.int32) * M + assignments[:, v2]
    return np.bincount(pairs, minlength=M * M).reshape((M, M))
metrics.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _fast_hist(self, label_true, label_pred, n_class):
        mask = (label_true >= 0) & (label_true < n_class)
        hist = np.bincount(
            n_class * label_true[mask].astype(int) +
            label_pred[mask], minlength=n_class**2).reshape(n_class, n_class)
        return hist
clustering.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def relabel_by_size(labels):
    """ Relabel clusters so they are sorted by number of members, descending.
    Args: labels (np.array(int)): 1-based cluster labels """
    order = np.argsort(np.argsort(-np.bincount(labels)))
    return 1 + order[labels]
clustering.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_cluster_sizes(clustering):
    """ Returns a numpy array containing cell-counts for each cluster """
    return np.bincount(clustering.clusters)[1:]
report.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def add_many(self, elems):
        self.active = True
        elems = np.copy(elems).astype(np.int_)
        elems[elems > self.max_value] = 1 + self.max_value
        self.counts += np.bincount(elems, minlength=len(self.counts))
molecule_counter.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_cdna_mol_counts_per_gene(self, gene_index, remove_none_gene=True):
        mol_genes = self.get_column('gene')

        num_genes = len(gene_index.get_genes())
        gene_counts = np.bincount(mol_genes, minlength=num_genes + 1)
        if remove_none_gene:
            gene_counts = gene_counts[:num_genes]

        return gene_counts
1decision_tree_submit.py 文件源码 项目:Python-Machine-Learning-By-Example 作者: PacktPublishing 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_leaf(labels):
    # Obtain the leaf as the majority of the labels
    return np.bincount(labels).argmax()
preprocessing.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compute_class_frequencies(segment,num_classes):
    if isinstance(segment,list):
        segment = np.asarray(segment)
    f = 1.0 * np.bincount(segment.reshape(-1,).astype(int),minlength=num_classes) / np.prod(segment.shape)
    return f
preprocessing.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def compute_centralvoxel_frequencies(segment,minlength):
    if isinstance(segment,list):
        segment = np.asarray(segment)
    shape = segment.shape[-3:]

    middle_coordinate = np.zeros(3,int)
    for it_coordinate,coordinate in enumerate(shape):
        if coordinate%2==0:
            middle_coordinate[it_coordinate] = coordinate / 2 - 1
        else:
            middle_coordinate[it_coordinate] = coordinate/2

    segment = segment.reshape((-1,) + shape)
    f = 1.0 * np.bincount(segment[:,middle_coordinate[0],middle_coordinate[1],middle_coordinate[2]].reshape(-1,).astype(int),minlength=minlength) / np.prod(segment.shape[:-3])
    return f
dataset.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_class_distribution(self, subject_list):

        class_frequencies = np.zeros(self.n_classes)

        for subj in subject_list:
            labels = subj.load_labels()
            mask = subj.load_ROI_mask()
            class_frequencies += np.bincount(labels.flatten().astype('int'), weights=mask.flatten(),
                                             minlength=self.n_classes)

        return class_frequencies
dataset.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_class_weights(self,subject_list, mask_bool = True):

        class_frequencies = np.zeros(self.n_classes)

        for subj in subject_list:
            labels = subj.load_labels()
            if mask_bool == 'ROI':
                mask = subj.load_ROI_mask()
                class_frequencies += np.bincount(labels.flatten().astype('int'), weights=mask.flatten().astype('int'),
                                                 minlength=self.n_classes)
            elif mask_bool == 'labels':
                mask = np.zeros_like(labels)
                mask[labels > 0] = 1
                # print(np.bincount(labels.flatten().astype('int'), weights=mask.flatten().astype('int'),
                #                                  minlength=self.n_classes))
                class_frequencies += np.bincount(labels.flatten().astype('int'), weights=mask.flatten().astype('int'),
                                                 minlength=self.n_classes+1)[1:]
            else :
                class_frequencies += np.bincount(labels.flatten().astype('int'),
                                                 minlength=self.n_classes)

        class_frequencies = class_frequencies / np.sum(class_frequencies)
        class_weight = np.sort(class_frequencies)[int(np.ceil(1.0*self.n_classes/2))] / class_frequencies
        class_weight[np.where(class_frequencies == 0)[0]] = 0 #avoid infinit weight

        return class_weight
tools.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def epoch_voting(Y, chunk_size):

    Y_new = Y.copy()

    for i in range(1+len(Y_new)/chunk_size):
        epoch = Y_new[i*chunk_size:(i+1)*chunk_size]
        if len(epoch) != 0: winner = np.bincount(epoch).argmax()
        Y_new[i*chunk_size:(i+1)*chunk_size] = winner              
    return Y_new
mppovm.py 文件源码 项目:mpnum 作者: dseuss 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def est_pmf(self, samples, normalize=True, eps=1e-10):
        """Estimate probability mass function from samples

        :param np.ndarray samples: `(n_samples, len(self.nsoutdims))`
            array of samples
        :param bool normalize: True: Return normalized probability
            estimates (default). False: Return integer outcome counts.
        :returns: Estimated probabilities as ndarray `est_pmf` with
            shape `self.nsoutdims`

        `n_samples * est_pmf[i1, ..., ik]` provides the number of
        occurences of outcome `(i1, ..., ik)` in `samples`.

        """
        n_samples = samples.shape[0]
        n_out = np.prod(self.nsoutdims)
        if samples.ndim > 1:
            samples = self.pack_samples(samples)
        counts = np.bincount(samples, minlength=n_out)
        assert counts.shape == (n_out,)
        counts = counts.reshape(self.nsoutdims)
        assert counts.sum() == n_samples
        if normalize:
            return counts / n_samples
        else:
            return counts
sf_kmeans.py 文件源码 项目:kmeans-service 作者: MAYHEM-Lab 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def fit(self, data):
        """
        Run K-Means on data n_init times.

        Parameters
        ----------
        data: numpy array

        Returns
        -------
        No value is returned.
        Function sets the following two object params:
            self.labels_
            self.cluster_centers_
        """
        data = np.array(data)
        labels, cluster_centers = [], []
        for i in range(self.n_init):
            if not self.warm_start:
                self.cluster_centers_ = None
                self._global_covar_matrices = None
                self._inv_covar_matrices = None
            self._fit(data)
            labels += [self.labels_]
            cluster_centers += [self.cluster_centers_]
            self.inertias_ += [self._inertia(data)]
            self.log_likelihoods_ += [self.log_likelihood(data)]
        best_idx = np.argmin(self.inertias_)
        self.labels_ = labels[best_idx]
        self.all_labels_ = labels
        self.best_log_likelihood_ = self.log_likelihoods_[best_idx]
        self.best_inertia_ = self.inertias_[best_idx]
        self.cluster_centers_ = cluster_centers[best_idx]
        if self.verbose == 1:
            print('fit: n_clusters: {}, label bin count: {}'.format(self.n_clusters, np.bincount(self.labels_, minlength=self.n_clusters)))
deepcut.py 文件源码 项目:deepcut 作者: rkcosmos 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _document_frequency(X):
    """Count the number of non-zero values for each feature in sparse X."""
    if sp.isspmatrix_csr(X):
        return np.bincount(X.indices, minlength=X.shape[1])
    else:
        return np.diff(sp.csc_matrix(X, copy=False).indptr)


问题


面经


文章

微信
公众号

扫码关注公众号