python类r_()的实例源码

test_utils.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_numpy_one(self):
        o = Identity()
        n = np.r_[2., 3]

        assert np.all(n+1 == n+o)
        assert np.all(1+n == o+n)
        assert np.all(n-1 == n-o)
        assert np.all(1-n == o-n)
        assert np.all(n/1 == n/o)
        assert np.all(n/-1 == n/-o)
        assert np.all(1/n == o/n)
        assert np.all(-1/n == -o/n)
        assert np.all(n*1 == n*o)
        assert np.all(n*-1 == n*-o)
        assert np.all(1*n == o*n)
        assert np.all(-1*n == -o*n)
test_utils.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_float64_pass(self):
        # The number of units of least precision
        # In this case, use a few places above the lowest level (ie nulp=1)
        nulp = 5
        x = np.linspace(-20, 20, 50, dtype=np.float64)
        x = 10**x
        x = np.r_[-x, x]

        # Addition
        eps = np.finfo(x.dtype).eps
        y = x + x*eps*nulp/2.
        assert_array_almost_equal_nulp(x, y, nulp)

        # Subtraction
        epsneg = np.finfo(x.dtype).epsneg
        y = x - x*epsneg*nulp/2.
        assert_array_almost_equal_nulp(x, y, nulp)
test_utils.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_complex64_pass(self):
        nulp = 5
        x = np.linspace(-20, 20, 50, dtype=np.float32)
        x = 10**x
        x = np.r_[-x, x]
        xi = x + x*1j

        eps = np.finfo(x.dtype).eps
        y = x + x*eps*nulp/2.
        assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
        assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
        y = x + x*eps*nulp/4.
        assert_array_almost_equal_nulp(xi, y + y*1j, nulp)

        epsneg = np.finfo(x.dtype).epsneg
        y = x - x*epsneg*nulp/2.
        assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
        assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
        y = x - x*epsneg*nulp/4.
        assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_2d(self):
        # Tests mr_ on 2D arrays.
        a_1 = np.random.rand(5, 5)
        a_2 = np.random.rand(5, 5)
        m_1 = np.round_(np.random.rand(5, 5), 0)
        m_2 = np.round_(np.random.rand(5, 5), 0)
        b_1 = masked_array(a_1, mask=m_1)
        b_2 = masked_array(a_2, mask=m_2)
        # append columns
        d = mr_['1', b_1, b_2]
        self.assertTrue(d.shape == (5, 10))
        assert_array_equal(d[:, :5], b_1)
        assert_array_equal(d[:, 5:], b_2)
        assert_array_equal(d.mask, np.r_['1', m_1, m_2])
        d = mr_[b_1, b_2]
        self.assertTrue(d.shape == (10, 5))
        assert_array_equal(d[:5,:], b_1)
        assert_array_equal(d[5:,:], b_2)
        assert_array_equal(d.mask, np.r_[m_1, m_2])
camera_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def from_points(cls, p, q, r): 
        abc = (p-r).cross(q-r)
        hp = np.r_[abc, -abc.dot(r)]
        return cls(hp)
rulsif.py 文件源码 项目:shift-detect 作者: paolodedios 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def generateAllGaussianCenters(self, referenceSamples=None) :
        """
        Generates kernels in the region where the P(X_reference) takes large values
        """
        self.kernelBasis = referenceSamples.shape[1]
        return referenceSamples[:, numpy.r_[0:self.kernelBasis]]
rulsif.py 文件源码 项目:shift-detect 作者: paolodedios 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def generateFirstNGaussianCenters(self, referenceSamples=None) :
        """
        Chooses the firts N samples as Gaussian centers as an optimization
        """
        numcols             = referenceSamples.shape[1]
        self.kernelBasis    = min(self.kernelBasis, numcols)
        return referenceSamples[:, numpy.r_[0:self.kernelBasis]]
invalid_cnpj_cpf_classifier.py 文件源码 项目:rosie 作者: datasciencebr 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def predict(self, dataframe):
        def is_invalid(row):
            valid_cpf = cpf.validate(str(row['recipient_id']).zfill(11))
            valid_cnpj = cnpj.validate(str(row['recipient_id']).zfill(14))
            good_doctype = row['document_type'] in ('bill_of_sale', 'simple_receipt', 'unknown')
            return good_doctype and (not (valid_cpf or valid_cnpj))
        return np.r_[dataframe.apply(is_invalid, axis=1)]
monthly_subquota_limit_classifier.py 文件源码 项目:rosie 作者: datasciencebr 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def predict(self, X=None):
        self._X['is_over_monthly_subquota_limit'] = False
        for metadata in self.limits:
            data, monthly_limit = metadata['data'], metadata['monthly_limit']
            if len(data):
                surplus_reimbursements = self.__find_surplus_reimbursements(data, monthly_limit)
                self._X.loc[surplus_reimbursements.index,
                            'is_over_monthly_subquota_limit'] = True
        results = self._X.loc[self.X.index, 'is_over_monthly_subquota_limit']
        return np.r_[results]
irregular_companies_classifier.py 文件源码 项目:rosie 作者: datasciencebr 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def predict(self, X):
        statuses = ['BAIXADA', 'NULA', 'SUSPENSA', 'INAPTA']
        self._X = X.apply(self.__compare_date, axis=1)
        return np.r_[self._X & X['situation'].isin(statuses)]
evolution_strategy.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def disp(name=None, idx=None):
    """displays selected data from (files written by) the class
    `CMADataLogger`.

    The call ``cma.disp(name, idx)`` is a shortcut for
    ``cma.CMADataLogger(name).disp(idx)``.

    Arguments
    ---------
    `name`
        name of the logger, filename prefix, `None` evaluates to
        the default ``'outcmaes'``
    `idx`
        indices corresponding to rows in the data file; by
        default the first five, then every 100-th, and the last
        10 rows. Too large index values are removed.

    The best ever observed iteration is also printed by default.

    Examples
    --------
    ::

       import cma
       from numpy import r_
       # assume some data are available from previous runs
       cma.disp(None, r_[0, -1])  # first and last
       cma.disp(None, r_[0:int(1e9):100, -1]) # every 100-th and last
       cma.disp(idx=r_[0, -10:0]) # first and ten last
       cma.disp(idx=r_[0:int(1e9):1000, -10:0])

    :See also: `CMADataLogger.disp`

    """
    return CMADataLogger(name if name else CMADataLogger.default_prefix
                         ).disp(idx)

# END cmaplt.py
rigid_transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def vec(self):
        return np.r_[self.translation, self.quaternion]
rigid_transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def matrix(self):
        """:obj:`numpy.ndarray` of float: The canonical 4x4 matrix
        representation of this transform.

        The first three columns contain the columns of the rotation matrix
        followed by a zero, and the last column contains the translation vector
        followed by a one.
        """
        return np.r_[np.c_[self._rotation, self._translation], [[0,0,0,1]]]
test_rigid_transform.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_inverse(self):
        R_a_b = RigidTransform.random_rotation()
        t_a_b = RigidTransform.random_translation()
        T_a_b = RigidTransform(R_a_b, t_a_b, 'a', 'b')
        T_b_a = T_a_b.inverse()

        # multiple with numpy arrays
        M_a_b = np.r_[np.c_[R_a_b, t_a_b], [[0,0,0,1]]]
        M_b_a = np.linalg.inv(M_a_b)

        self.assertTrue(np.sum(np.abs(T_b_a.matrix - M_b_a)) < 1e-5, msg='Inverse gave incorrect transformation') 

        # check frames
        self.assertEqual(T_b_a.from_frame, 'b', msg='Inverse has incorrect input frame')
        self.assertEqual(T_b_a.to_frame, 'a', msg='Inverse has incorrect output frame')
financial_insights.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rank_bank_topic(bank_doc_map, doc_topic_dist):
    """Rank topics for banks
    """
    bank_topic_ranks = {}
    for each_bank in bank_doc_map:
        rank = []
        for each_doc in bank_doc_map[each_bank]:
            rank.append(calc_ranks(doc_topic_dist[each_doc]))
        rank = np.r_[rank]
        # compute ranking score
        bank_topic_ranks[each_bank] = np.mean(1. / rank, axis=0)
    return bank_topic_ranks
train_vae.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def train(args):
    corpus = load_corpus(args.input)
    n_vocab, docs = len(corpus['vocab']), corpus['docs']
    corpus.clear() # save memory

    X_docs = []
    for k in docs.keys():
        X_docs.append(vecnorm(doc2vec(docs[k], n_vocab), 'logmax1', 0))
        del docs[k]

    np.random.seed(0)
    np.random.shuffle(X_docs)
    # X_docs_noisy = corrupted_matrix(np.r_[X_docs], 0.1)

    n_val = args.n_val
    # X_train = np.r_[X_docs[:-n_val]]
    # X_val = np.r_[X_docs[-n_val:]]
    X_train = np.r_[X_docs[:-n_val]]
    del X_docs[:-n_val]
    X_val = np.r_[X_docs]
    del X_docs

    start = timeit.default_timer()

    vae = VarAutoEncoder(n_vocab, args.n_dim, comp_topk=args.comp_topk, ctype=args.ctype, save_model=args.save_model)
    vae.fit([X_train, X_train], [X_val, X_val], nb_epoch=args.n_epoch, batch_size=args.batch_size)

    print 'runtime: %ss' % (timeit.default_timer() - start)
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    # markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]
    plt.rc('legend',**{'fontsize':30})
    classes_to_visual = list(set(classes_to_visual))
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual:
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=1, marker=markers[class_ids[c]],
                        markersize=10, label=c)
    legend = plt.legend(loc='upper right', shadow=True)
    # plt.title("tsne")
    # plt.savefig(save_file)
    plt.savefig(save_file, format='eps', dpi=2000)
    plt.show()
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_tsne_3d(doc_codes, doc_labels, classes_to_visual, save_file, maker_size=None, opaque=None):
    markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    plt.rc('legend',**{'fontsize':20})
    colors = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers
    while True:
        if C <= len(colors):
            break
        colors += colors

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=3, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    fig = plt.figure(figsize=(10, 10), facecolor='white')
    ax = fig.add_subplot(111, projection='3d')

    # The problem is that the legend function don't support the type returned by a 3D scatter.
    # So you have to create a "dummy plot" with the same characteristics and put those in the legend.
    scatter_proxy = []
    for i in range(C):
        cls = classes_to_visual[i]
        idx = np.array(labels) == cls
        ax.scatter(X[idx, 0], X[idx, 1], X[idx, 2], c=colors[i], alpha=opaque[i] if opaque else 1, s=maker_size[i] if maker_size else 20, marker=markers[i], label=cls)
        scatter_proxy.append(mpl.lines.Line2D([0],[0], linestyle="none", c=colors[i], marker=markers[i], label=cls))
    ax.legend(scatter_proxy, classes_to_visual, numpoints=1)
    plt.savefig(save_file)
    plt.show()
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def DBN_visualize_pca_2d(doc_codes, doc_labels, classes_to_visual, save_file):
    """
        Visualize the input data on a 2D PCA plot. Depending on the number of components,
        the plot will contain an X amount of subplots.
        @param doc_codes:
        @param number_of_components: The number of principal components for the PCA plot.
    """

    # markers = ["p", "s", "h", "H", "+", "x", "D"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual.keys(), range(C)))

    codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    X = PCA(n_components=3).fit_transform(X)
    plt.figure(figsize=(10, 10), facecolor='white')

    x_pc, y_pc = 1, 2

    for c in classes_to_visual.keys():
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, x_pc], X[idx, y_pc], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
        # plt.legend(c)
    plt.title('Projected on the first 2 PCs')
    plt.xlabel('PC %s' % x_pc)
    plt.ylabel('PC %s' % y_pc)
    # legend = plt.legend(loc='upper center', shadow=True)
    plt.savefig(save_file)
    plt.show()
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def reuters_visualize_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    """
        Visualize the input data on a 2D PCA plot. Depending on the number of components,
        the plot will contain an X amount of subplots.
        @param doc_codes:
        @param number_of_components: The number of principal components for the PCA plot.
    """

    # markers = ["p", "s", "h", "H", "+", "x", "D"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_names = classes_to_visual.keys()
    class_ids = dict(zip(class_names, range(C)))
    class_names = set(class_names)
    codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if class_names.intersection(set(doc_labels[doc]))])

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual.keys():
        idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
    legend = plt.legend(loc='upper center', shadow=True)
    plt.title("tsne")
    plt.savefig(save_file)
    plt.show()


问题


面经


文章

微信
公众号

扫码关注公众号