python类fliplr()的实例源码

logic.py 文件源码 项目:crowddynamics 作者: jaantollander 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def update(self):
        agents = self.simulation.agents.array
        field = self.simulation.field

        # FIXME: virtual obstacles add too much computational overhead
        # obstacles = geom_to_linear_obstacles(
        #     field.obstacles.buffer(0.3, resolution=3))
        obstacles = geom_to_linear_obstacles(field.obstacles)
        direction_herding = leader_follower_with_herding_interaction(
            agents, obstacles, self.sight_follower, self.size_nearest_other)
        is_follower = agents['is_follower']
        agents['target_direction'][is_follower] = direction_herding[is_follower]

        # Set target direction for herding agents that do not have a target
        # if field.obstacles is None:
        #     agents['target_direction'][is_follower] = direction_herding[is_follower]
        # else:
        #     # Obstacle avoidance
        #     mgrid = field.meshgrid(self.step)
        #     dir_map_obs, dmap_obs = field.direction_map_obstacles(self.step)
        #     indices = np.fliplr(mgrid.indicer(agents['position'][is_follower]))
        #     direction = obstacle_handling_continuous(
        #         dmap_obs, dir_map_obs, direction_herding[is_follower], indices,
        #         self.radius, self.strength)
        #     agents['target_direction'][is_follower] = direction
load_data2.py 文件源码 项目:camelyon-segmentation 作者: erenhalici 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def augment_image(self, image, i):
    if i == 0:
      return np.rot90(image)
    elif i == 1:
      return np.rot90(image,2)
    elif i == 2:
      return np.rot90(image,3)
    elif i == 3:
      return image
    elif i == 4:
      return np.fliplr(image)
    elif i == 5:
      return np.flipud(image)
    elif i == 6:
      return image.transpose(1,0,2)
    elif i == 7:
      return np.fliplr(np.rot90(image))
load_data.py 文件源码 项目:camelyon-segmentation 作者: erenhalici 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def augment_image(self, image, i):
    if i == 0:
      return np.rot90(image)
    elif i == 1:
      return np.rot90(image,2)
    elif i == 2:
      return np.rot90(image,3)
    elif i == 3:
      return image
    elif i == 4:
      return np.fliplr(image)
    elif i == 5:
      return np.flipud(image)
    elif i == 6:
      return image.transpose(1,0,2)
    elif i == 7:
      return np.fliplr(np.rot90(image))
libaudio.py 文件源码 项目:magphase 作者: CSTR-Edinburgh 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def add_hermitian_half(m_data, data_type='mag'):

    if (data_type == 'mag') or (data_type == 'magnitude'):
        m_data = np.hstack((m_data , np.fliplr(m_data[:,1:-1])))

    elif data_type == 'phase':        
        m_data[:,0]  = 0            
        m_data[:,-1] = 0   
        m_data = np.hstack((m_data , -np.fliplr(m_data[:,1:-1])))

    elif data_type == 'zeros':
        nfrms, nFFThalf = m_data.shape
        m_data = np.hstack((m_data , np.zeros((nfrms,nFFThalf-2))))

    elif data_type == 'complex':
        m_data_real = add_hermitian_half(m_data.real)
        m_data_imag = add_hermitian_half(m_data.imag, data_type='phase')
        m_data      = m_data_real + m_data_imag * 1j

    return m_data

# Remove hermitian half of fft-based data:-------------------------------------
# Works for either even or odd fft lenghts.
libaudio.py 文件源码 项目:magphase 作者: CSTR-Edinburgh 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def mcep_to_lin_sp_log(mgc_mat, nFFT):

    nFrms, n_coeffs = mgc_mat.shape
    nFFTHalf = 1 + nFFT/2

    mgc_mat = np.concatenate((mgc_mat, np.zeros((nFrms, (nFFT/2 - n_coeffs + 1)))),1)
    mgc_mat = np.concatenate((mgc_mat, np.fliplr(mgc_mat[:,1:-1])),1)
    sp_log  = (np.fft.fft(mgc_mat, nFFT,1)).real
    sp_log  = sp_log[:,0:nFFTHalf]

    return sp_log 


#Gets RMS from matrix no matter the number of bins m_data has, 
#it figures out according to the FFT length.
# For example, nFFT = 128 , nBins_data= 60 (instead of 65 or 128)
Art_class.py 文件源码 项目:artorithmia 作者: alichtner 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def extract_symmetry(self):
        """
        Calculate the symmetry of the image by substracting left from right.

        Input:  None
        Output: None
        """
        # currently this is only for horizontal symmetry
        if len(self.image.shape) == 3:
            height, width, _ = self.image.shape
        else:
            height, width = self.image.shape
        if width % 2 != 0:
            width -= 1
            pixels = height * width
            left = self.image[:, :width/2]
            right = self.image[:, width/2:-1]
        else:
            pixels = height * width
            left = self.image[:, :width/2]
            right = self.image[:, width/2:]
        left_gray = color.rgb2gray(left)
        right_gray = color.rgb2gray(right)
        self.symmetry = np.abs(left_gray -
                               np.fliplr(right_gray)).sum()/(pixels/1.*2)
utility.py 文件源码 项目:paints_tf 作者: latte0 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def preprocess_A_and_B(img_A, img_B, load_size=286, fine_size=256, flip=True, is_test=False):
    if is_test:
        img_A = scipy.misc.imresize(img_A, [fine_size, fine_size])
        img_B = scipy.misc.imresize(img_B, [fine_size, fine_size])
    else:
        img_A = scipy.misc.imresize(img_A, [load_size, load_size])
        img_B = scipy.misc.imresize(img_B, [load_size, load_size])

        h1 = int(np.ceil(np.random.uniform(1e-2, load_size-fine_size)))
        w1 = int(np.ceil(np.random.uniform(1e-2, load_size-fine_size)))
        img_A = img_A[h1:h1+fine_size, w1:w1+fine_size]
        img_B = img_B[h1:h1+fine_size, w1:w1+fine_size]

        if flip and np.random.random() > 0.5:
            img_A = np.fliplr(img_A)
            img_B = np.fliplr(img_B)

    return img_A, img_B

# -----------------------------
facenet.py 文件源码 项目:facerecognition 作者: guoxiaolu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def flip(image, random_flip):
    if random_flip and np.random.choice([True, False]):
        image = np.fliplr(image)
    return image
recipe-578657.py 文件源码 项目:code 作者: ActiveState 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def is_cross(self, candidate):
        '''
            first check the trace
            then flip and check the opposite trace

        '''
        return (candidate.trace()+np.fliplr(candidate).trace()) == (candidate.shape[0]*2)
image_processing.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def load_image_array(image_file, image_size,
                     image_id, data_dir='Data/datasets/mscoco/train2014',
                     mode='train'):
    img = None
    if os.path.exists(image_file):
        #print('found' + image_file)
        img = skimage.io.imread(image_file)
    else:
        print('notfound' + image_file)
        img = skimage.io.imread('http://mscoco.org/images/%d' % (image_id))
        img_path = os.path.join(data_dir, 'COCO_%s2014_%.12d.jpg' % ( mode,
                                                                      image_id))
        skimage.io.imsave(img_path, img)

    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
        img_new[:,:,0] = img
        img_new[:,:,1] = img
        img_new[:,:,2] = img
        img = img_new

    img_resized = skimage.transform.resize(img, (image_size, image_size))

    # FLIP HORIZONTAL WIRH A PROBABILITY 0.5
    if random.random() > 0.5:
        img_resized = np.fliplr(img_resized)

    return img_resized.astype('float32')
input_data_v1.py 文件源码 项目:C3D-tensorflow 作者: hx173149 项目源码 文件源码 阅读 67 收藏 0 点赞 0 评论 0
def randomHorizontalFlip(rand_seed,img, u=0.5):
    if rand_seed < u:
        img = cv2.flip(img,1)  #np.fliplr(img)  #cv2.flip(img,1) ##left-right
    return img
bci_workshop_tools.py 文件源码 项目:Wall-EEG 作者: neurotechuoft 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plotmultichannel(data, params=None): 
# TODO Receive Labels as arguments
    """
    Creates a plot to present multichannel data

    Arguments
    data:  Multichannel Data [n_samples, n_channels]
    params: information about the data acquisition device being
    """  
    plt.figure()        

    n_samples = data.shape[0]
    n_channels = data.shape[1]

    if params is not None:
        fs = params['sampling frequency']
        names = params['names of channels']
    else:
        fs = 1
        names = [""] * n_channels

    time_vec = np.arange(n_samples) / float(fs)

    data = np.fliplr(data)
    offset = 0
    for i_channel in range (0, n_channels):
        data_ac = data[:,i_channel] - np.mean(data[:,i_channel])
        offset = offset + 2 * np.max(np.abs(data_ac))        
        plt.plot(time_vec, data_ac + offset, label=names[i_channel])        

    plt.xlabel('Time [s]');
    plt.ylabel('Amplitude');
    plt.legend()        
    plt.draw()
Train.py 文件源码 项目:BirdProject 作者: ZlodeiBaal 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def AddNoize(i):
    R = random.randint(0, 1)
    if (R==1):
        i=np.fliplr(i)#random mirroring
    R = random.randint(0, 1)
    if (R==1):
        R = random.randint(-10, 10)
        i= ndimage.interpolation.rotate(i,R)#random rotation
    R = random.randint(0, 1)
    if (R==1):
        crop_left=random.randint(0,15)
        crop_right = random.randint(1, 15)
        crop_top = random.randint(0, 15)
        crop_bot = random.randint(1, 15)
        i=i[crop_left:-crop_right,crop_top:-crop_bot,:] #Randomcrop
    #Next code is VERY SLOW becoase it use Python to change brightness
    #need to optimase it, but i have no time yet:)
    R = random.randint(0, 2)
    if (R==2): #Random brightness in R channel
        d = random.random()+1
        i[:, :, 0] = adjust_gamma(i[:,:,0],d)
    R = random.randint(0, 2)
    if (R==2): #Random brightness in G channel
        d = random.random()+1
        i[:, :, 1] = adjust_gamma(i[:, :, 1], d)
    R = random.randint(0, 2)
    if (R==2): #Random brightness in B channel
        d = random.random()+1
        i[:, :, 2] = adjust_gamma(i[:, :, 2], d)
    #misc.imsave("test.jpg",i)
    return i


#Prepare data for learning
polynomials2matrix.py 文件源码 项目:lps-anchor-pos-estimator 作者: bitcraze 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def polynomials2matrix(polynomial):
    p = eqsize(polynomial)
    nt = sum(nterms(p))
    nv = nvars(p[0])

    M = zeros((nv, nt), dtype=int32)
    inds = [None] * p.size
    k = 0
    for i in range(0, p.size):
        inds.append[i] = range(k, k + nterms(p[i]) - 1)
        M[:, k:k + nterms(p[i]) - 1] = monomials(p[i])
        k = k + nterms(p[i])

    neg_M_sum = -1 * M.sum(axis=0)
    M_trans = M.conj().T
    neg_M_sum_trans = neg_M_sum.conj().T
    M_fliplr = fliplr(M_trans)

    new_grev_M = concatenate(neg_M_sum_trans, M_fliplr)

    _, ia, ib = unique(new_grev_M)

    M = float(M[:, ia])

    mon = zeros(M.shape[1], 1)
    for i in range(M.shape[1], -1, -1):
        mon[i, 1] = Multipol.multipol(1, M[:, i])

    C = zeros(p.size, M.shape[0])
    for i in range(0, p.size):
        ind = ib[inds[i]]
        C[i, ind] = coeffs(p[i])

    return C, mon
cifar10.py 文件源码 项目:Densenet-Tensorflow 作者: taki0112 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _random_flip_leftright(batch):
    for i in range(len(batch)):
        if bool(random.getrandbits(1)):
            batch[i] = np.fliplr(batch[i])
    return batch
pspnet.py 文件源码 项目:PSPNet-Keras-tensorflow 作者: Vladkryvoruchko 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def predict(self, img, flip_evaluation):
        """
        Predict segementation for an image.

        Arguments:
            img: must be rowsxcolsx3
        """
        h_ori, w_ori = img.shape[:2]
        if img.shape[0:2] != self.input_shape:
            print("Input %s not fitting for network size %s, resizing. You may want to try sliding prediction for better results." % (img.shape[0:2], self.input_shape))
            img = misc.imresize(img, self.input_shape)
        input_data = self.preprocess_image(img)
        # utils.debug(self.model, input_data)

        regular_prediction = self.model.predict(input_data)[0]
        if flip_evaluation:
            print("Predict flipped")
            flipped_prediction = np.fliplr(self.model.predict(np.flip(input_data, axis=2))[0])
            prediction = (regular_prediction + flipped_prediction) / 2.0
        else:
            prediction = regular_prediction

        if img.shape[0:1] != self.input_shape:  # upscale prediction if necessary
            h, w = prediction.shape[:2]
            prediction = ndimage.zoom(prediction, (1.*h_ori/h, 1.*w_ori/w, 1.),
                                      order=1, prefilter=False)
        return prediction


问题


面经


文章

微信
公众号

扫码关注公众号