python类fromfile()的实例源码

autoplot.py 文件源码 项目:Dragonfly 作者: duaneloh 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def parse(self):
        fname = self.fname.text()

        if os.path.isfile(fname):
            f = open(fname, "r")
        else:
            sys.stderr.write("Unable to open %s\n"%fname)
            return

        self.vol = np.fromfile(f, dtype='f8')
        self.size = int(np.ceil(np.power(len(self.vol), 1./3.)))
        self.vol = self.vol.reshape(self.size, self.size, self.size)
        self.center = self.size/2
        if not self.image_exists:
            self.layer_slider.setRange(0, self.size-1)
            self.layernum.setMaximum(self.size-1)
            self.layer_slider.setValue(self.center)
            self.layerslider_moved(self.center)

        self.old_fname = fname
reademc.py 文件源码 项目:Dragonfly 作者: duaneloh 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _parse_headers(self):
        self.num_data_list = []
        self.ones_accum_list = []
        self.multi_accum_list = []
        self.num_pix = []

        for i, photons_file in enumerate(self.photons_list):
            with open(photons_file, 'rb') as f:
                num_data = np.fromfile(f, dtype='i4', count=1)[0]
                self.num_pix.append(np.fromfile(f, dtype='i4', count=1)[0])
                if self.num_pix[i] != len(self.geom_list[i].x):
                    sys.stderr.write('Warning: num_pix for %s is different (%d vs %d)\n' % (photons_file, self.num_pix[i], len(self.geom_list[i].x)))
                f.seek(1024, 0)
                ones = np.fromfile(f, dtype='i4', count=num_data)
                multi = np.fromfile(f, dtype='i4', count=num_data)
            self.num_data_list.append(num_data)
            self.ones_accum_list.append(np.cumsum(ones))
            self.multi_accum_list.append(np.cumsum(multi))

        self.num_data_list = np.cumsum(self.num_data_list)
        self.num_frames = self.num_data_list[-1]
sigproc.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def read_data(self, start=None, end=None):
        """read data from file and store it locally"""
        nframe = self._find_nframe_from_file()
        seek_to_data(self.file_object)
        read_start = 0
        end_read = nframe * self.nifs * self.nchans
        if start is not None:
            if start < 0:
                read_start = (nframe + start) * self.nifs * self.nchans
            elif start >= 0:
                read_start = start * self.nifs * self.nchans
        if end is not None:
            if end < 0:
                end_read = (nframe + end) * self.nifs * self.nchans
            elif end >= 0:
                end_read = end * self.nifs * self.nchans
        self.file_object.seek(read_start, os.SEEK_CUR)
        nbytes_to_read = end_read - read_start
        data = np.fromfile(self.file_object, count=nbytes_to_read, dtype=self.dtype)
        nframe = data.size // self.nifs // self.nchans
        data = data.reshape((nframe, self.nifs, self.nchans))
        if self.nbits < 8:
            data = unpack(data, self.nbits)
        self.data = data
        return self.data
htkmfc.py 文件源码 项目:merlin 作者: CSTR-Edinburgh 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def readheader(self):
        self.fh.seek(0,0)
        spam = self.fh.read(12)
        self.nSamples, self.sampPeriod, self.sampSize, self.parmKind = \
                       unpack(">IIHH", spam)
        # Get coefficients for compressed data
        if self.parmKind & _C:
            self.dtype = 'h'
            self.veclen = self.sampSize / 2
            if self.parmKind & 0x3f == IREFC:
                self.A = 32767
                self.B = 0
            else:
                self.A = numpy.fromfile(self.fh, 'f', self.veclen)
                self.B = numpy.fromfile(self.fh, 'f', self.veclen)
                if self.swap:
                    self.A = self.A.byteswap()
                    self.B = self.B.byteswap()
        else:
            self.dtype = 'f'
            self.veclen = self.sampSize / 4
        self.hdrlen = self.fh.tell()
        self.veclen = int(self.veclen)
train_lite.py 文件源码 项目:chn_handwriting 作者: zhangchunsheng 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_from_gnt_dir(gnt_dir=train_data_dir):
    def one_file(f):
        header_size = 10
        while True:
            header = np.fromfile(f, dtype='uint8', count=header_size)
            if not header.size: break
            sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
            tagcode = header[5] + (header[4]<<8)
            width = header[6] + (header[7]<<8)
            height = header[8] + (header[9]<<8)
            if header_size + width*height != sample_size:
                break
            image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
            yield image, tagcode

    for file_name in os.listdir(gnt_dir):
        if file_name.endswith('.gnt'):
            file_path = os.path.join(gnt_dir, file_name)
            with open(file_path, 'rb') as f:
                for image, tagcode in one_file(f):
                    yield image, tagcode
data.py 文件源码 项目:chn_handwriting 作者: zhangchunsheng 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read_from_gnt_dir(gnt_dir=train_data_dir):
    def one_file(f):
        header_size = 10
        while True:
            header = np.fromfile(f, dtype='uint8', count=header_size)
            if not header.size: break
            sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
            tagcode = header[5] + (header[4]<<8)
            width = header[6] + (header[7]<<8)
            height = header[8] + (header[9]<<8)
            if header_size + width*height != sample_size:
                break
            image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
            yield image, tagcode
    for file_name in os.listdir(gnt_dir):
        if file_name.endswith('.gnt'):
            file_path = os.path.join(gnt_dir, file_name)
            with open(file_path, 'rb') as f:
                for image, tagcode in one_file(f):
                    yield image, tagcode
read.py 文件源码 项目:chn_handwriting 作者: zhangchunsheng 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_from_gnt_dir(gnt_dir=train_data_dir):
    def one_file(f):
        header_size = 10
        while True:
            header = np.fromfile(f, dtype='uint8', count=header_size)
            if not header.size: break
            sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
            tagcode = header[5] + (header[4]<<8)
            width = header[6] + (header[7]<<8)
            height = header[8] + (header[9]<<8)
            if header_size + width*height != sample_size:
                break
            image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
            yield image, tagcode

    for file_name in os.listdir(gnt_dir):
        if file_name.endswith('.gnt'):
            file_path = os.path.join(gnt_dir, file_name)
            with open(file_path, 'rb') as f:
                for image, tagcode in one_file(f):
                    yield image, tagcode

# ?????
inputs.py 文件源码 项目:text-classification2 作者: yuhui-lin 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_embedding():
    embedding_path = os.path.join(FLAGS.datasets_dir, "wordVectors.txt")
    if not tf.gfile.Exists(embedding_path):
        raise ValueError("embedding file not exists")
    # embedding = np.fromfile(embedding_path, sep=' ')
    # print("embedding size:", embedding.shape)
    # print("embedding size:", embedding.dtype)
    # embedding.reshape(100232, 50)
    # print("embedding size:", embedding.shape)
    data = np.fromfile(embedding_path, dtype=np.float32, sep=' ')
    print("shape:", data.shape)
    print("ndim:", data.ndim)
    print("dtype:", data.dtype)
    print(data)
    print("reshape vocabulary")
    d = data.reshape((-1, 50))
    print("shape:", d.shape)
    print("ndim:", d.ndim)
    print("dtype:", d.dtype)
    print(d)
    return d
plot_density.py 文件源码 项目:traffic_video_analysis 作者: polltooh 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def plot_conf_mat(densmap_name):
    fig = plt.figure(figsize = (20,20))
    plt.clf()
    ax = fig.add_subplot(111)
    #ax.set_aspect(1)
    densmap = np.fromfile(densmap_name, np.float32)
    densmap = densmap.reshape(227, 227)
    densmap *= 100
    densmap[densmap > 1] = 1
    res = ax.imshow(densmap, cmap = plt.cm.jet,
            interpolation = 'nearest')

    plt.savefig('density.jpg')
    img = cv2.imread("density.jpg")
    img = cv2.resize(img, (227,227))
    cv2.imshow("i", img)#
    cv2.waitKey(0)
    #plt.show()
utils.py 文件源码 项目:ICGan-tensorflow 作者: zhangqianhui 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_mnist(self):

        data_dir = os.path.join("./data", "mnist")

        fd = open(os.path.join(data_dir, 'train-images-idx3-ubyte'))
        loaded = np.fromfile(file=fd , dtype=np.uint8)
        trX = loaded[16:].reshape((60000, 28 , 28 ,  1)).astype(np.float)

        fd = open(os.path.join(data_dir, 'train-labels-idx1-ubyte'))
        loaded = np.fromfile(file=fd, dtype=np.uint8)
        trY = loaded[8:].reshape((60000)).astype(np.float)

        fd = open(os.path.join(data_dir, 't10k-images-idx3-ubyte'))
        loaded = np.fromfile(file=fd, dtype=np.uint8)
        teX = loaded[16:].reshape((10000, 28 , 28 , 1)).astype(np.float)

        fd = open(os.path.join(data_dir, 't10k-labels-idx1-ubyte'))
        loaded = np.fromfile(file=fd, dtype=np.uint8)
        teY = loaded[8:].reshape((10000)).astype(np.float)

        trY = np.asarray(trY)
        teY = np.asarray(teY)

        X = np.concatenate((trX, teX), axis=0)
        y = np.concatenate((trY, teY), axis=0)

        seed = 547
        np.random.seed(seed)
        np.random.shuffle(X)
        np.random.seed(seed)
        np.random.shuffle(y)

        #convert label to one-hot

        y_vec = np.zeros((len(y), 10), dtype=np.float)
        for i, label in enumerate(y):
            y_vec[i, int(y[i])] = 1.0

        return X / 255. , y_vec
evp1.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def unpack(stream):
    base = stream.tell()
    header = Header.unpack(stream)

    influence_groups = [None]*header.influence_group_count
    inverse_bind_matrices = None

    stream.seek(base + header.influence_count_offset)
    for i in range(header.influence_group_count):
        influence_count = uint8.unpack(stream)
        influence_groups[i] = [Influence(None,None) for _ in range(influence_count)]

    stream.seek(base + header.index_offset)
    for influence_group in influence_groups:
        for influence in influence_group:
            influence.index = uint16.unpack(stream)

    stream.seek(base + header.weight_offset)
    for influence_group in influence_groups:
        for influence in influence_group:
            influence.weight = float32.unpack(stream)

    if header.inverse_bind_matrix_offset != 0:
        stream.seek(base + header.inverse_bind_matrix_offset)
        element_type = numpy.dtype((numpy.float32,(3,4))).newbyteorder('>')
        element_count = (header.section_size - header.inverse_bind_matrix_offset)//element_type.itemsize
        inverse_bind_matrices = numpy.fromfile(stream,element_type,element_count)

    stream.seek(base + header.section_size)
    return influence_groups,inverse_bind_matrices
vtx1.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def unpack_array(stream,attribute_format,size):
    if attribute_format.attribute == gx.VA_POS:
        component_type = gx.ComponentType(attribute_format.component_type)
        component_count = gx.PositionComponentCount(attribute_format.component_count)
        array_type = Array
    elif attribute_format.attribute == gx.VA_NRM:
        component_type = gx.ComponentType(attribute_format.component_type)
        component_count = gx.NormalComponentCount(attribute_format.component_count)
        array_type = Array
    elif attribute_format.attribute in gx.VA_CLR:
        component_type = gx.ColorComponentType(attribute_format.component_type)
        component_count = gx.ColorComponentCount(attribute_format.component_count)
        array_type = ColorArray
    elif attribute_format.attribute in gx.VA_TEX:
        component_type = gx.ComponentType(attribute_format.component_type)
        component_count = gx.TexCoordComponentCount(attribute_format.component_count)
        array_type = Array
    else:
        raise FormatError('invalid vertex attribute')

    element_type = array_type.create_element_type(component_type,component_count)
    element_count = size//element_type.itemsize
    array = numpy.fromfile(stream,element_type,element_count).view(array_type)
    array.attribute = attribute_format.attribute
    array.component_type = component_type
    array.component_count = component_count
    array.scale_exponent = attribute_format.scale_exponent
    return array
plyfile.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _read_bin(self, stream, byte_order):
        '''
        Read data from a binary stream.  Raise StopIteration if the
        property could not be read.

        '''
        try:
            return _np.fromfile(stream, self.dtype(byte_order), 1)[0]
        except IndexError:
            raise StopIteration
plyfile.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _read_bin(self, stream, byte_order):
        (len_t, val_t) = self.list_dtype(byte_order)

        try:
            n = _np.fromfile(stream, len_t, 1)[0]
        except IndexError:
            raise StopIteration

        data = _np.fromfile(stream, val_t, n)
        if len(data) < n:
            raise StopIteration

        return data
convert.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def convert_f0(f0, src, trg):
    mu_s, std_s = np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32)
    mu_t, std_t = np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32)
    lf0 = tf.where(f0 > 1., tf.log(f0), f0)
    lf0 = tf.where(lf0 > 1., (lf0 - mu_s)/std_s * std_t + mu_t, lf0)
    lf0 = tf.where(lf0 > 1., tf.exp(lf0), lf0)
    return lf0
build.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test():
    # ==== Test: batch mixer (conclusion: capacity should be larger to make sure good mixing) ====
    x, y = read('./dataset/vcc2016/bin/*/*/1*001.bin', 32, min_after_dequeue=1024, capacity=2048)
    sv = tf.train.Supervisor()
    with sv.managed_session() as sess:
        for _ in range(200):
            x_, y_ = sess.run([x, y])
            print(y_)


    # ===== Read binary ====
    features = read_whole_features('./dataset/vcc2016/bin/Training Set/SF1/*001.bin')

    sv = tf.train.Supervisor()
    with sv.managed_session() as sess:
        features = sess.run(features)

    y = pw2wav(features)
    sf.write('test1.wav', y, 16000)  # TODO fs should be specified externally.


    # ==== Direct read =====
    f = './dataset/vcc2016/bin/Training Set/SF1/100001.bin'
    features = np.fromfile(f, np.float32)
    features = np.reshape(features, [-1, 513*2 + 1 + 1 + 1]) # f0, en, spk

    y = pw2wav(features)
    sf.write('test2.wav', y, 16000)
io.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_float64_as_float32(filename):
    x = np.fromfile(filename, np.float64)
    return x.astype(np.float32)
main.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def main():
    ''' NOTE: The input is rescaled to [-1, 1] '''

    dirs = validate_log_dirs(args)
    tf.gfile.MakeDirs(dirs['logdir'])

    with open(args.architecture) as f:
        arch = json.load(f)

    with open(os.path.join(dirs['logdir'], args.architecture), 'w') as f:
        json.dump(arch, f, indent=4)

    normalizer = Tanhize(
        xmax=np.fromfile('./etc/xmax.npf'),
        xmin=np.fromfile('./etc/xmin.npf'),
    )

    image, label = read(
        file_pattern=arch['training']['datadir'],
        batch_size=arch['training']['batch_size'],
        capacity=2048,
        min_after_dequeue=1024,
        normalizer=normalizer,
    )

    machine = MODEL(arch)

    loss = machine.loss(image, label)
    trainer = TRAINER(loss, arch, args, dirs)
    trainer.train(nIter=arch['training']['max_iter'], machine=machine)
plyfile.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _read_bin(self, stream, byte_order):
        '''
        Read data from a binary stream.

        '''
        return _np.fromfile(stream, self.dtype(byte_order), 1)[0]
plyfile.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _read_bin(self, stream, byte_order):
        '''
        Read data from a binary stream.

        '''
        (len_t, val_t) = self.list_dtype(byte_order)

        n = _np.fromfile(stream, len_t, 1)[0]

        return _np.fromfile(stream, val_t, n)


问题


面经


文章

微信
公众号

扫码关注公众号