python类ravel()的实例源码

stacking.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def iflatten(arrays):
    """
    flatten the arrays in a stream into a single, 1D array. Note that
    the order of flattening is not guaranteed.

    Parameters
    ----------
    arrays : iterable
        Stream of NumPy arrays. Contrary to convention, these
        arrays do not need to be of the same shape. 

    Yields
    ------
    online_flatten : ndarray
        Cumulative flattened array.
    """
    arrays = map(np.ravel, arrays)
    yield from istack(arrays, axis = 0)
classifier.py 文件源码 项目:TrackToTrip 作者: ruipgil 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def learn(self, features, labels):
        """ Fits the classifier

        If it's state is empty, the classifier is fitted, if not
        the classifier is partially fitted.
        See sklearn's SGDClassifier fit and partial_fit methods.

        Args:
            features (:obj:`list` of :obj:`list` of :obj:`float`)
            labels (:obj:`list` of :obj:`str`): Labels for each set of features.
                New features are learnt.
        """
        labels = np.ravel(labels)
        self.__learn_labels(labels)
        if len(labels) == 0:
            return

        labels = self.labels.transform(labels)
        if self.feature_length > 0 and hasattr(self.clf, 'partial_fit'):
            # FIXME? check docs, may need to pass class=[...]
            self.clf = self.clf.partial_fit(features, labels)
        else:
            self.clf = self.clf.fit(features, labels)
            self.feature_length = len(features[0])
language_data_utils.py 文件源码 项目:shalo 作者: henryre 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def glove(data_fname='glove.840B.300d.txt', out_fname='glove.pkl'):
    """Process raw dependency GloVe data from Socher '13"""
    words, U, dim = [], [], None
    with open(DATA_DIR + data_fname, 'rb') as f:
        for j, line in enumerate(f):
            x = line.strip().split()
            word, vector, d = x[0], np.ravel(x[1:]), len(x) - 1
            if dim is None: dim = d
            elif d != dim:  raise Exception('{0}: {1}!={2}'.format(j, dim, d))
            U.append(vector)
            words.append(word)
    U = np.array(U)
    print "Found {0} words".format(len(words))
    print "Found {0}x{1} embedding matrix".format(*U.shape)
    with open(DATA_DIR + out_fname, 'wb') as f:
        cPickle.dump((words, U), f)
test_core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
test_core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_ravel(self):
        # Tests ravel
        a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])
        aravel = a.ravel()
        assert_equal(aravel._mask.shape, aravel.shape)
        a = array([0, 0], mask=[1, 1])
        aravel = a.ravel()
        assert_equal(aravel._mask.shape, a.shape)
        a = array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
        aravel = a.ravel()
        assert_equal(aravel.shape, (1, 5))
        assert_equal(aravel._mask.shape, a.shape)
        # Checks that small_mask is preserved
        a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)
        assert_equal(a.ravel()._mask, [0, 0, 0, 0])
        # Test that the fill_value is preserved
        a.fill_value = -99
        a.shape = (2, 2)
        ar = a.ravel()
        assert_equal(ar._mask, [0, 0, 0, 0])
        assert_equal(ar._data, [1, 2, 3, 4])
        assert_equal(ar.fill_value, -99)
        # Test index ordering
        assert_equal(a.ravel(order='C'), [1, 2, 3, 4])
        assert_equal(a.ravel(order='F'), [1, 3, 2, 4])
test_core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_view(self):
        # Test view w/ flexible dtype
        iterator = list(zip(np.arange(10), np.random.rand(10)))
        data = np.array(iterator)
        a = array(iterator, dtype=[('a', float), ('b', float)])
        a.mask[0] = (1, 0)
        controlmask = np.array([1] + 19 * [0], dtype=bool)
        # Transform globally to simple dtype
        test = a.view(float)
        assert_equal(test, data.ravel())
        assert_equal(test.mask, controlmask)
        # Transform globally to dty
        test = a.view((float, 2))
        assert_equal(test, data)
        assert_equal(test.mask, controlmask.reshape(-1, 2))

        test = a.view((float, 2), np.matrix)
        assert_equal(test, data)
        self.assertTrue(isinstance(test, np.matrix))
drf_plot.py 文件源码 项目:digital_rf 作者: MITHaystack 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def hex2vec(h, ell):
    """hex2vec(h, ell) generates sign vector of length ell from the hex string h.
    ell must be <= 4*len(h) (excluding the optional leading "0x")
    """

    if h[0:2] in ['0x', '0X']:
        h = h[2:]

    nybble = numpy.array([
        [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1],
        [0, 1, 0, 0], [0, 1, 0, 1], [
            0, 1, 1, 0], [0, 1, 1, 1],
        [1, 0, 0, 0], [1, 0, 0, 1], [
            1, 0, 1, 0], [1, 0, 1, 1],
        [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]])

    vec = numpy.ravel(numpy.array([nybble[int(x, 16)] for x in h]))

    if len(vec) < ell:
        raise ValueError('hex string too short')
    return vec[len(vec) - ell:]
common_funcs.py 文件源码 项目:model_sweeper 作者: akimovmike 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_multicollinearity(df, target_name, r2_threshold = 0.89):
    '''Tests if any of the features could be predicted from others with R2 >= 0.89

    input: dataframe, name of target (to exclude)

   '''
    r2s = pd.DataFrame()
    for feature in df.columns.difference([target_name]):
        model = sk.linear_model.Ridge()
        model.fit(df[df.columns.difference([target_name,feature])], df[feature])

        pos = np.in1d(model.coef_, np.sort(model.coef_)[-5:])

        r2s = r2s.append(pd.DataFrame({'r2':sk.metrics.r2_score(df[feature],\
            model.predict(df[df.columns.difference([target_name, feature])])),\
            'predictors' : str(df.columns.difference([target_name, feature])[np.ravel(np.argwhere(pos == True))].tolist())}, index = [feature]))
        print('Testing', feature)

    print('-----------------')

    if len(r2s[r2s['r2'] >= r2_threshold]) > 0:
        print('Multicollinearity detected')
        print(r2s[r2s['r2'] >= r2_threshold])
    else:
        print('No multicollinearity')
_lpso.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, y, nsuj, pout=1, clf='lda', **clfArg):
        self._y = y
        self._ry = np.ravel(np.concatenate(y))
        self._nsuj = nsuj
        self._pout = pout
        # Manage cross-validation:
        self._cv = LeavePGroupsOut(pout)
        self._cv.shStr = 'Leave '+str(pout)+' subjects out'
        self._cv.lgStr = self._cv.shStr
        self._cv.rep = 1
        self._cv.y = y[0]
        # Manage classifier :
        if isinstance(clf, (int, str)):
            clf = defClf(self._ry, clf=clf, **clfArg)
        self._clf = clf
        # Manage info:
        self._updatestring()
        # Stat tools:
        self.stat = clfstat()
_lpso.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _fit(x, y, train, test, self, n_jobs):
    """Sub fit function
    """
    nsuj, nfeat = x.shape
    iteract = product(range(nfeat), zip(train, test))
    ya = Parallel(n_jobs=n_jobs)(delayed(_subfit)(
            np.concatenate(tuple(x[i].iloc[k[0]])),
            np.concatenate(tuple(x[i].iloc[k[1]])),
            np.concatenate(tuple(y[0].iloc[k[0]])),
            np.concatenate(tuple(y[0].iloc[k[1]])),
            self) for i, k in iteract)
    # Re-arrange ypred and ytrue:
    ypred, ytrue = zip(*ya)
    ypred = [np.concatenate(tuple(k)) for k in np.split(np.array(ypred), nfeat)]
    ytrue = [np.concatenate(tuple(k)) for k in np.split(np.array(ytrue), nfeat)]
    da = np.ravel([100*accuracy_score(ytrue[k], ypred[k]) for k in range(nfeat)])
    return da, ytrue, ypred
_classif.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _featinfo(self, clf, cv, da, grp=None, pbino=None, pperm=None):
        # Manage input arguments :
        dastd = np.round(100*da.std(axis=1))/100
        dam = da.mean(axis=1)
        if grp is None:
            grp = np.array([str(k) for k in range(len(dam))])
        if pbino is None:
            pbino = bino_da2p(self.y, dam)
        if pperm is None:
            pperm = np.ones((len(dam),))
        array = np.array([np.ravel(dam), np.ravel(dastd), np.ravel(pbino), np.ravel(pperm), np.ravel(grp)]).T

        # Create the dataframe:
        subcol = ['DA (%)', 'STD (+/-)', 'p-values (Binomial)', 'p-values (Permutations)', 'Group']
        str2repeat = clf.shStr+' / '+cv.shStr
        idxtuple = list(zip(*[[str2repeat]*len(subcol), subcol]))
        index = pd.MultiIndex.from_tuples(idxtuple, names=['Settings', 'Results'])
        return pd.DataFrame(array, columns=index)
multcomp.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def bonferroni(p, axis=-1):
    """Bonferroni correction

    Args:
        p: array
            Array of p-values

    Kargs:
        axis: int, optional, [def: -1]
            Axis to apply the Bonferroni correction. If axis is -1,
            the correction is applied through all dimensions.

    Return:
        Corrected pvalues
    """
    if axis == -1:
        fact = len(np.ravel(p))
    else:
        fact = p.shape[axis]
    return fact*p
binomial.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def bino_da2p(y, da):
    """For a given vector label, get p-values of a decoding accuracy
    using the binomial law.

    Args:
        y : array
            The vector label

        da: int / float / list /array [0 <= da <= 100]
            The decoding accuracy array. Ex : da = [75, 33, 25, 17].

    Return:
        p: ndarray
            The p-value associate to each decoding accuracy
    """
    y = np.ravel(y)
    nbepoch = len(y)
    nbclass = len(np.unique(y))
    if not isinstance(da, np.ndarray):
        da = np.array(da)
    if (da.max() > 100) or (da.min() < 0):
        raise ValueError('Consider 0<=da<=100')
    return 1 - binom.cdf(nbepoch * da / 100, nbepoch, 1 / nbclass)
permutations.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def perm_array(x, n_perm=200, rndstate=0):
    """Generate n_perm permutations of a ndarray

    Args:
        x: array
            Data to repeat of shape (d1, d2, ..., d3)

        n_perm: int
            Number of permutations

        rndstate: int
            Fix the random state of the machine

    Returns:
        perm: array
            Repeated data of shape (n_perm, d1, d2, ..., d3)

        idx: array
            Index of permutations of shape (n_perm, d1, d2, ..., d3)
    """
    dim = tuple([n_perm] + list(x.shape))
    xrep = perm_rep(np.ravel(x), n_perm)
    xrep, idx = _scramble2D(xrep, rndstate=rndstate)

    return xrep.reshape(dim), idx.reshape(dim)
cmon_plt.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def __new__(self, ax, y, x=None, color=None, cmap='inferno', pltargs={}, **kwargs):
        # Check inputs :
        y = np.ravel(y)
        if x is None:
            x = np.arange(len(y))
        else:
            x = np.ravel(x)
            if len(y) != len(x):
                raise ValueError('x and y must have the same length')
        if color is None:
            color = np.arange(len(y))

        # Create segments:
        xy = np.array([x, y]).T[..., np.newaxis].reshape(-1, 1, 2)
        segments = np.concatenate((xy[0:-1, :], xy[1::]), axis=1)
        lc = LineCollection(segments, cmap=cmap, **pltargs)
        lc.set_array(color)

        # Plot managment:
        ax.add_collection(lc)
        plt.axis('tight')
        _pltutils.__init__(self, ax, **kwargs)

        return plt.gca()
wham.py 文件源码 项目:CSB 作者: csb-toolbox 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def setUp(self):
        self.betas = numpy.linspace(1e-5, 1., 10)
        self.n = n = 1000

        gaussian = FunnyGaussian(10, 100.)

        self.samples = []
        self.raw_energies = []


        for beta in self.betas:
            self.samples.append(gaussian.sample(n, beta))
            self.raw_energies.append(gaussian.energy(self.samples[-1]))

        self.raw_energies = numpy.array(self.raw_energies)
        self.ensembles = [BoltzmannEnsemble(beta=beta) for beta in self.betas]

        self.log_z = gaussian.log_Z()
        self.log_g = gaussian.log_g(numpy.ravel(self.raw_energies))
__init__.py 文件源码 项目:CSB 作者: csb-toolbox 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testTrapezoidal2D(self):
        from csb.numeric import trapezoidal_2d, exp
        from numpy import pi

        xx = np.linspace(-10., 10, 500)
        yy = np.linspace(-10., 10, 500)

        X, Y = np.meshgrid(xx, yy)
        x = np.array(list(zip(np.ravel(X), np.ravel(Y))))        

        # mean = np.zeros((2,))
        cov = np.eye(2)
        mu = np.ones(2)
        # D = 2
        q = np.sqrt(np.clip(np.sum((x - mu) * np.dot(x - mu, np.linalg.inv(cov).T), -1), 0., 1e308))
        f = exp(-0.5 * q ** 2) / ((2 * pi) * np.sqrt(np.abs(np.linalg.det(cov))))
        f = f.reshape((len(xx), len(yy)))
        I = trapezoidal_2d(f) * (xx[1] - xx[0]) * (yy[1] - yy[0])

        self.assertTrue(abs(I - 1.) <= 1e-8)
__init__.py 文件源码 项目:CSB 作者: csb-toolbox 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testLogTrapezoidal2D(self):
        from csb.numeric import log_trapezoidal_2d, log
        from numpy import pi

        xx = np.linspace(-10., 10, 500)
        yy = np.linspace(-10., 10, 500)

        X, Y = np.meshgrid(xx, yy)
        x = np.array(list(zip(np.ravel(X), np.ravel(Y))))        

        # mean = np.zeros((2,))
        cov = np.eye(2)
        mu = np.ones(2)
        # D = 2
        q = np.sqrt(np.clip(np.sum((x - mu) * np.dot(x - mu, np.linalg.inv(cov).T), -1), 0., 1e308))
        f = -0.5 * q ** 2 - log((2 * pi) * np.sqrt(np.abs(np.linalg.det(cov))))
        f = f.reshape((len(xx), len(yy)))

        logI = log_trapezoidal_2d(f, xx, yy)

        self.assertTrue(abs(logI) <= 1e-8)
test_utils.py 文件源码 项目:MuGo 作者: brilee 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_board(string):
    reverse_map = {
        'X': go.BLACK,
        'O': go.WHITE,
        '.': go.EMPTY,
        '#': go.FILL,
        '*': go.KO,
        '?': go.UNKNOWN
    }

    string = re.sub(r'[^XO\.#]+', '', string)
    assert len(string) == go.N ** 2, "Board to load didn't have right dimensions"
    board = np.zeros([go.N, go.N], dtype=np.int8)
    for i, char in enumerate(string):
        np.ravel(board)[i] = reverse_map[char]
    return board
util.py 文件源码 项目:AutoML-Challenge 作者: postech-mlg-exbrain 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sanitize_array(array):
    """
    Replace NaN and Inf (there should not be any!)
    :param array:
    :return:
    """
    a = np.ravel(array)
    #maxi = np.nanmax((filter(lambda x: x != float('inf'), a))
    #                 )  # Max except NaN and Inf
    #mini = np.nanmin((filter(lambda x: x != float('-inf'), a))
    #                 )  # Mini except NaN and Inf
    maxi = np.nanmax(a[np.isfinite(a)])
    mini = np.nanmin(a[np.isfinite(a)])
    array[array == float('inf')] = maxi
    array[array == float('-inf')] = mini
    mid = (maxi + mini) / 2
    array[np.isnan(array)] = mid
    return array
routines.py 文件源码 项目:triflow 作者: locie 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def diff_approx(self, fields, pars, eps=1E-8):
        nvar, N = len(fields.dependent_variables), fields.size
        fpars = {key: pars[key] for key in self.pars}
        fpars['dx'] = (fields['x'][-1] - fields['x'][0]) / fields['x'].size
        J = np.zeros((N * nvar, N * nvar))
        indices = np.indices(fields.uarray.shape)
        for i, (var_index, node_index) in enumerate(zip(*map(np.ravel,
                                                             indices))):
            fields_plus = fields.copy()
            fields_plus.uarray[var_index, node_index] += eps
            fields_moins = fields.copy()
            fields_moins.uarray[var_index, node_index] -= eps
            Fplus = self(fields_plus, pars)
            Fmoins = self(fields_moins, pars)
            J[i] = (Fplus - Fmoins) / (2 * eps)

        return J.T
nearest_neighbours.py 文件源码 项目:implicit 作者: benfred 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def bm25_weight(X, K1=100, B=0.8):
    """ Weighs each row of a sparse matrix X  by BM25 weighting """
    # calculate idf per term (user)
    X = coo_matrix(X)

    N = float(X.shape[0])
    idf = log(N / (1 + bincount(X.col)))

    # calculate length_norm per document (artist)
    row_sums = numpy.ravel(X.sum(axis=1))
    average_length = row_sums.mean()
    length_norm = (1.0 - B) + B * row_sums / average_length

    # weight matrix rows by bm25
    X.data = X.data * (K1 + 1.0) / (K1 * length_norm[X.row] + X.data) * idf[X.col]
    return X
comms.py 文件源码 项目:arlpy 作者: org-arl 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sym2bi(x, m):
    """Convert symbols to bits.

    :param x: symbol array
    :param m: symbol alphabet size (must be a power of 2)
    :returns: bit array

    >>> import arlpy
    >>> arlpy.comms.sym2bi([1, 2, 7], 8)
    array([0, 0, 1, 0, 1, 0, 1, 1, 1])
    """
    n = int(_np.log2(m))
    if 2**n != m:
        raise ValueError('m must be a power of 2')
    x = _np.asarray(x, dtype=_np.int)
    if _np.any(x < 0) or _np.any(x >= m):
        raise ValueError('Invalid data for specified m')
    y = _np.zeros((len(x), n), dtype=_np.int)
    for i in range(n):
        y[:, n-i-1] = (x >> i) & 1
    return _np.ravel(y)
tf_transformer_test.py 文件源码 项目:spark-deep-learning 作者: databricks 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _check_transformer_output(transformer, dataset, expected):
    """
    Given a transformer and a spark dataset, check if the transformer
    produces the expected results.
    """
    analyzed_df = tfs.analyze(dataset)
    out_df = transformer.transform(analyzed_df)

    # Collect transformed values
    out_colnames = list(_output_mapping.values())
    _results = []
    for row in out_df.select(out_colnames).collect():
        curr_res = [row[colname] for colname in out_colnames]
        _results.append(np.ravel(curr_res))
    out_tgt = np.hstack(_results)

    _err_msg = 'not close => shape {} != {}, max_diff {} > {}'
    max_diff = np.max(np.abs(expected - out_tgt))
    err_msg = _err_msg.format(expected.shape, out_tgt.shape,
                              max_diff, _all_close_tolerance)
    assert np.allclose(expected, out_tgt, atol=_all_close_tolerance), err_msg
pre.py 文件源码 项目:skan 作者: jni 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def hyperball(ndim, radius):
    """Return a binary morphological filter containing pixels within `radius`.

    Parameters
    ----------
    ndim : int
        The number of dimensions of the filter.
    radius : int
        The radius of the filter.

    Returns
    -------
    ball : array of bool, shape [2 * radius + 1,] * ndim
        The required structural element
    """
    size = 2 * radius + 1
    center = [(radius,) * ndim]

    coords = np.mgrid[[slice(None, size),] * ndim].reshape(ndim, -1).T
    distances = np.ravel(spatial.distance_matrix(coords, center))
    selector = distances <= radius

    ball = np.zeros((size,) * ndim, dtype=bool)
    ball.ravel()[selector] = True
    return ball
xpcs_timepixel_debug.py 文件源码 项目:chxanalys 作者: yugangzhang 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_timepixel_image( x,y,t, det_shape = [256, 256], delta_time = None   ):
    '''give x,y, t data to get image in a period of delta_time (in second)'''
    t0 = t.min() *6.1
    tm = t.max() *6.1

    if delta_time is not None:
        delta_time *=1e12
        if delta_time > tm:
            delta_time = tm            
    else:
        delta_time = tm
    #print( delta_time)
    t_ = t[t<delta_time]
    x_ = x[:len(t_)]
    y_ = y[:len(t_)]

    img = np.zeros( det_shape, dtype= np.int32 )
    pixlist = x_*det_shape[0] + y_ 
    his = np.histogram( pixlist, bins= np.arange( det_shape[0]*det_shape[1] +1) )[0] 
    np.ravel( img )[:] = his
    print( 'The max photon count is %d.'%img.max())
    return img
chx_correlationc.py 文件源码 项目:chxanalys 作者: yugangzhang 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def check_normalization( frame_num, q_list, imgsa, data_pixel ):
    '''check the ROI intensity before and after normalization
    Input:
        frame_num: integer, the number of frame to be checked
        q_list: list of integer, the list of q to be checked
        imgsa: the raw data
        data_pixel: the normalized data, caculated by fucntion  Get_Pixel_Arrayc
    Plot the intensities    
    '''
    fig,ax=plt.subplots(2)
    n=0
    for q in q_list:
        norm_data = data_pixel[frame_num][qind==q]
        raw_data = np.ravel( np.array(imgsa[frame_num]) )[pixelist[qind==q]]
        #print(raw_data.mean())
        plot1D( raw_data,ax=ax[0], legend='q=%s'%(q), m=markers[n],
               title='fra=%s_raw_data'%(frame_num))

        #plot1D( raw_data/mean_int_sets_[frame_num][q-1], ax=ax[1], legend='q=%s'%(q), m=markers[n],
        #       xlabel='pixel',title='fra=%s_norm_data'%(frame_num))
        #print( mean_int_sets_[frame_num][q-1] )
        plot1D( norm_data, ax=ax[1], legend='q=%s'%(q), m=markers[n],
               xlabel='pixel',title='fra=%s_norm_data'%(frame_num))
        n +=1
owperiodogram.py 文件源码 项目:orange3-timeseries 作者: biolab 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def periodogram(self, attr):
        is_equispaced = self.data.time_delta is not None
        if is_equispaced:
            x = np.ravel(self.data.interp(attr))
            periods, pgram = periodogram_equispaced(x)
            # TODO: convert periods into time_values-relative values, i.e.
            # periods *= self.data.time_delta; like lombscargle already does
            # periods *= self.data.time_delta
        else:
            times = np.asanyarray(self.data.time_values, dtype=float)
            x = np.ravel(self.data[:, attr])
            # Since lombscargle works with explicit times,
            # we can skip any nan values
            nonnan = ~np.isnan(x)
            if not nonnan.all():
                x, times = x[nonnan], times[nonnan]

            periods, pgram = periodogram_nonequispaced(times, x)
        return periods, pgram
test_core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_minmax_func(self):
        # Tests minimum and maximum.
        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
        # max doesn't work if shaped
        xr = np.ravel(x)
        xmr = ravel(xm)
        # following are true because of careful selection of data
        assert_equal(max(xr), maximum(xmr))
        assert_equal(min(xr), minimum(xmr))

        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
        x = arange(5)
        y = arange(5) - 2
        x[3] = masked
        y[0] = masked
        assert_equal(minimum(x, y), where(less(x, y), x, y))
        assert_equal(maximum(x, y), where(greater(x, y), x, y))
        assert_(minimum(x) == 0)
        assert_(maximum(x) == 4)

        x = arange(4).reshape(2, 2)
        x[-1, -1] = masked
        assert_equal(maximum(x), 2)
test_core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_ravel(self):
        # Tests ravel
        a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])
        aravel = a.ravel()
        assert_equal(aravel._mask.shape, aravel.shape)
        a = array([0, 0], mask=[1, 1])
        aravel = a.ravel()
        assert_equal(aravel._mask.shape, a.shape)
        a = array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
        aravel = a.ravel()
        assert_equal(aravel.shape, (1, 5))
        assert_equal(aravel._mask.shape, a.shape)
        # Checks that small_mask is preserved
        a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)
        assert_equal(a.ravel()._mask, [0, 0, 0, 0])
        # Test that the fill_value is preserved
        a.fill_value = -99
        a.shape = (2, 2)
        ar = a.ravel()
        assert_equal(ar._mask, [0, 0, 0, 0])
        assert_equal(ar._data, [1, 2, 3, 4])
        assert_equal(ar.fill_value, -99)
        # Test index ordering
        assert_equal(a.ravel(order='C'), [1, 2, 3, 4])
        assert_equal(a.ravel(order='F'), [1, 3, 2, 4])


问题


面经


文章

微信
公众号

扫码关注公众号