python类ascontiguousarray()的实例源码

libtcodpy.py 文件源码 项目:df-style-worldgen 作者: Dozed12 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
bed_read.py 文件源码 项目:pandas-plink 作者: limix 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def read_bed_chunk(filepath, nrows, ncols, row_start, row_end, col_start,
                   col_end):

    X = zeros((row_end - row_start, col_end - col_start), int64)

    ptr = ffi.cast("uint64_t *", X.ctypes.data)
    strides = empty(2, int64)
    strides[:] = X.strides
    strides //= 8

    e = lib.read_bed_chunk(filepath, nrows, ncols, row_start, col_start,
                           row_end, col_end, ptr,
                           ffi.cast("uint64_t *", strides.ctypes.data))
    if e != 0:
        raise RuntimeError("Failure while reading BED file %s." % filepath)

    X = ascontiguousarray(X, float)
    X[X == 3] = nan
    return X
roidb.py 文件源码 项目:TattDL 作者: z-harry-sun 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs

    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
explain.py 文件源码 项目:pytorch-explain-black-box 作者: jacobgil 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def preprocess_image(img):
    means=[0.485, 0.456, 0.406]
    stds=[0.229, 0.224, 0.225]

    preprocessed_img = img.copy()[: , :, ::-1]
    for i in range(3):
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
        preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
    preprocessed_img = \
        np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))

    if use_cuda:
        preprocessed_img_tensor = torch.from_numpy(preprocessed_img).cuda()
    else:
        preprocessed_img_tensor = torch.from_numpy(preprocessed_img)

    preprocessed_img_tensor.unsqueeze_(0)
    return Variable(preprocessed_img_tensor, requires_grad = False)
ndarray.py 文件源码 项目:Aurora 作者: upul 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _sync_copyfrom(self, source_array):
        """Peform an synchronize copy from the array.
        Parameters
        ----------
        source_array : array_like
            The data source we should like to copy from.
        """
        if not isinstance(source_array, np.ndarray):
            try:
                source_array = np.array(source_array, dtype=np.float32)
            except:
                raise TypeError('array must be an array_like data,' +
                                'type %s is not supported'
                                % str(type(source_array)))
        source_array = np.ascontiguousarray(source_array, dtype=np.float32)
        if source_array.shape != self.shape:
            raise ValueError('array shape do not match the shape of NDArray')
        source_arr, shape = NDArray._numpyasarray(source_array)
        check_call(_LIB.DLArrayCopyFromTo(
            ctypes.byref(source_arr), self.handle, None))
        # de-allocate shape until now
        _ = shape
libtcodpy.py 文件源码 项目:armcom2 作者: sudasana 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
libtcodpy.py 文件源码 项目:armcom2 作者: sudasana 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int_)
        g = numpy.ascontiguousarray(g, dtype=numpy.int_)
        b = numpy.ascontiguousarray(b, dtype=numpy.int_)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
roidb.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
roidb.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
roidb.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
roidb.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
roidb.py 文件源码 项目:FastRcnnDetect 作者: karthkk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets
libtcodpy.py 文件源码 项目:yelpdor 作者: bhallen 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def console_fill_foreground(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int32)
        g = numpy.ascontiguousarray(g, dtype=numpy.int32)
        b = numpy.ascontiguousarray(b, dtype=numpy.int32)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_foreground(con, cr, cg, cb)
libtcodpy.py 文件源码 项目:yelpdor 作者: bhallen 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def console_fill_background(con,r,g,b) :
    if len(r) != len(g) or len(r) != len(b):
        raise TypeError('R, G and B must all have the same size.')

    if (numpy_available and isinstance(r, numpy.ndarray) and
        isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
        #numpy arrays, use numpy's ctypes functions
        r = numpy.ascontiguousarray(r, dtype=numpy.int32)
        g = numpy.ascontiguousarray(g, dtype=numpy.int32)
        b = numpy.ascontiguousarray(b, dtype=numpy.int32)
        cr = r.ctypes.data_as(POINTER(c_int))
        cg = g.ctypes.data_as(POINTER(c_int))
        cb = b.ctypes.data_as(POINTER(c_int))
    else:
        # otherwise convert using ctypes arrays
        cr = (c_int * len(r))(*r)
        cg = (c_int * len(g))(*g)
        cb = (c_int * len(b))(*b)

    _lib.TCOD_console_fill_background(con, cr, cg, cb)
helloworld.py 文件源码 项目:TurbPlasma 作者: tulasinandan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def c_correlation(ar1,ar2,ax=0,dx=1.):
   lib = ctypes.cdll.LoadLibrary('/home/tulasi/P3D-PLASMA-PIC/p3dpy/helloworld.so')
   func = lib.c_correlation
   func.restype = None
   func.argtypes = [ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #ar1
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #ar2
                    ctypes.c_double,              #dx
                    ctypes.c_int,                 #nlen
                    ctypes.c_int,                 #nx
                    ctypes.c_int,                 #ny
                    ctypes.c_int,                 #nz
                    ctypes.c_int,                 #ax
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),   #r
                    ndpointer(ctypes.c_double, flags="C_CONTIGUOUS")]   #corr
# nlen finds the length of the array in the specified direction
   nlen=np.shape(ar2)[ax]/2; 
   nx=np.shape(ar1)[0]; 
   ny=np.shape(ar1)[1]; 
   nz=np.shape(ar1)[2]
   r=np.zeros(nlen);corr=np.zeros(nlen)
   func(np.ascontiguousarray(ar1),np.ascontiguousarray(ar2),dx,nlen,nx,ny,nz,ax,r,corr)
#  func(ar1,ar2,dx,nlen,nx,ny,nz,ax,r,corr)
   return r,corr
datafile.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _scale_data_to_float32(self, data):
        '''
            This function will convert data from local data dtype into float32, the default format of the algorithm
        '''
        if self.data_dtype != numpy.float32:
            data  = data.astype(numpy.float32)

        if self.dtype_offset != 0:
            data  -= self.dtype_offset

        if numpy.any(self.gain != 1):
            data *= self.gain

        return numpy.ascontiguousarray(data)
mask.py 文件源码 项目:alchemy 作者: voidrank 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _masks_as_c_order(masks):
    masks = masks.transpose((2, 0, 1))
    masks = np.ascontiguousarray(masks)
    return masks
cloudvolume.py 文件源码 项目:cloud-volume 作者: seung-lab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def upload_boss_image(self, img, offset):
    shape = Vec(*img.shape[:3])
    offset = Vec(*offset)

    bounds = Bbox(offset, shape + offset)

    if bounds.volume() < 1:
      raise EmptyRequestException('Requested less than one pixel of volume. {}'.format(bounds))

    x_rng = [ bounds.minpt.x, bounds.maxpt.x ]
    y_rng = [ bounds.minpt.y, bounds.maxpt.y ]
    z_rng = [ bounds.minpt.z, bounds.maxpt.z ]

    layer_type = 'image' if self.layer_type == 'unknown' else self.layer_type

    chan = ChannelResource(
      collection_name=self.path.bucket, 
      experiment_name=self.path.dataset, 
      name=self.path.layer, # Channel
      type=layer_type, 
      datatype=self.dtype,
    )

    if img.shape[3] == 1:
      img = img.reshape( img.shape[:3] )

    rmt = BossRemote(boss_credentials)
    img = img.T
    img = np.ascontiguousarray(img.astype(self.dtype))

    rmt.create_cutout(chan, self.mip, x_rng, y_rng, z_rng, img)
cloudvolume.py 文件源码 项目:cloud-volume 作者: seung-lab 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __new__(cls, buf, dataset_name, layer, mip, layer_type, bounds, *args, **kwargs):
    return super(VolumeCutout, cls).__new__(cls, shape=buf.shape, buffer=np.ascontiguousarray(buf), dtype=buf.dtype)
solution_classes.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def distinct(self):
        b = np.ascontiguousarray(self.solutions).view(np.dtype((np.void, self.solutions.dtype.itemsize * self.P)))
        _, unique_ind = np.unique(b, return_index = True)
        unique_ind = np.sort(unique_ind)
        new = self.copy()
        new.objvals = self.objvals[unique_ind]
        new.solutions = self.solutions[unique_ind]
        return new


问题


面经


文章

微信
公众号

扫码关注公众号