python类c_()的实例源码

synthgen.py 文件源码 项目:SynthText 作者: ankush-me 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def viz_textbb(fignum,text_im, bb_list,alpha=1.0):
    """
    text_im : image containing text
    bb_list : list of 2x4xn_i boundinb-box matrices
    """
    plt.close(fignum)
    plt.figure(fignum)
    plt.imshow(text_im)
    plt.hold(True)
    H,W = text_im.shape[:2]
    for i in xrange(len(bb_list)):
        bbs = bb_list[i]
        ni = bbs.shape[-1]
        for j in xrange(ni):
            bb = bbs[:,:,j]
            bb = np.c_[bb,bb[:,0]]
            plt.plot(bb[0,:], bb[1,:], 'r', linewidth=2, alpha=alpha)
    plt.gca().set_xlim([0,W-1])
    plt.gca().set_ylim([H-1,0])
    plt.show(block=False)
Annotation.py 文件源码 项目:pylidc 作者: pylidc 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def bbox(self, image_coords=True):
        """
        Return a 3 by 2 matrix, corresponding to the bounding box of the 
        annotation within the scan. If `scan_slice` is a numpy array 
        containing aslice of the scan, each slice of the annotation is 
        contained within the box:

            bbox[0,0]:bbox[0,1]+1, bbox[1,0]:bbox[1,1]+1

        If `image_coords` is `False` then each annotation slice is 
        instead contained within:

            bbox[1,0]:bbox[1,1]+1, bbox[0,0]:bbox[0,1]+1

        The last row of `bbox` give the inclusive lower and upper 
        bounds of the `image_z_position`.
        """
        matrix = self.contours_to_matrix()
        bbox   = np.c_[matrix.min(axis=0), matrix.max(axis=0)]
        return bbox if not image_coords else bbox[[1,0,2]]
rism3d_pressure.py 文件源码 项目:PC_plus 作者: MTS-Strathclyde 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plot_and_save(x, func, xvv_inst, plot=False, fname=False):
    mat = x.T
    for m in range(xvv_inst.nsites):
        for n in range(m+1):
            if fname:
                mat = np.c_[mat, func[:,m,n].T]
            if plot:
                plt.plot(x, func[:,m,n], 
                         label='{}-{}'.format(xvv_inst.atom_names[m], 
                                              xvv_inst.atom_names[n]))
    if fname:
        np.savetxt(fname, mat)
    if plot:
        plt.legend()
        plt.savefig('graph.png', dpi=300)
        plt.show()
xlstools.py 文件源码 项目:finance_news_analysis 作者: pskun 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_csv(filename, skip_lines=0):
    csvfile = file(filename, 'rb')
    reader = csv.reader(csvfile)
    data = np.empty(0, dtype=object)
    last_count = np.NAN
    for line in reader:
        if skip_lines > 0:
            skip_lines = skip_lines - 1
            continue
        if data.size > 0:
            if len(line) != last_count:
                raise Exception('unequal columes found')
            data = np.c_[data, line]
            last_count = len(line)
        else:
            data = np.array(line, dtype=object)
            data = data.reshape(len(data), 1)
            last_count = len(line)
    csvfile.close()
    return data.T
__init__.py 文件源码 项目:pumil 作者: levelfour 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def print_evaluation_result(clf, bags_test, args):
  pred_score = np.array([clf(B.data()) for B in bags_test])
  pred_label = np.array([1 if score >= 0 else -1 for score in pred_score])
  true_label = np.array([B.y for B in bags_test])
  a = accuracy (pred_label, true_label)  # accuracy
  p = precision(pred_label, true_label)  # precision
  r = recall   (pred_label, true_label)  # recall
  f = f_score  (pred_label, true_label)  # F-score
  auc = metrics.roc_auc_score((true_label+1)/2, pred_score)

  if not args.aucplot:
    sys.stdout.write("""# accuracy,precision,recall,f-score,ROC-AUC
{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}\n""".format(a, p, r, f, auc))
    sys.stdout.flush()

  else:
    sys.stdout.write("""# accuracy,precision,recall,f-score,ROC-AUC
# {:.3f},{:.3f},{:.3f},{:.3f},{:.3f}\n""".format(a, p, r, f, auc))
    sys.stdout.flush()
    np.savetxt(sys.stdout.buffer, np.c_[pred_score, true_label])
transforms.py 文件源码 项目:robopy 作者: adityadua24 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def trotx(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTX Rotation about X axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    trotx(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the x-axis.
    trotx(THETA, 'deg') as above but THETA is in degrees
    trotx(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = rotx(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
transforms.py 文件源码 项目:robopy 作者: adityadua24 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def troty(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTY Rotation about Y axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    troty(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the y-axis.
    troty(THETA, 'deg') as above but THETA is in degrees
    troty(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = roty(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
transforms.py 文件源码 项目:robopy 作者: adityadua24 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def trotz(theta, unit="rad", xyz=[0, 0, 0]):
    """
    TROTZ Rotation about Z axis

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :param xyz: the xyz translation, if blank defaults to [0,0,0]
    :return: homogeneous transform matrix

    trotz(THETA) is a homogeneous transformation (4x4) representing a rotation
    of THETA radians about the z-axis.
    trotz(THETA, 'deg') as above but THETA is in degrees
    trotz(THETA, 'rad', [x,y,z]) as above with translation of [x,y,z]
    """
    check_args.unit_check(unit)
    tm = rotz(theta, unit)
    tm = np.r_[tm, np.zeros((1, 3))]
    mat = np.c_[tm, np.array([[xyz[0]], [xyz[1]], [xyz[2]], [1]])]
    mat = np.asmatrix(mat.round(15))
    return mat


# ---------------------------------------------------------------------------------------#
transforms.py 文件源码 项目:robopy 作者: adityadua24 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def trot2(theta, unit='rad'):
    """
    TROT2 SE2 rotation matrix

    :param theta: rotation in radians or degrees
    :param unit: "rad" or "deg" to indicate unit being used
    :return: homogeneous transform matrix (3x3)

    TROT2(THETA) is a homogeneous transformation (3x3) representing a rotation of
    THETA radians.
    TROT2(THETA, 'deg') as above but THETA is in degrees.
    Notes::
    - Translational component is zero.
    """
    tm = rot2(theta, unit)
    tm = np.r_[tm, np.zeros((1, 2))]
    mat = np.c_[tm, np.array([[0], [0], [1]])]
    return mat


# ---------------------------------------------------------------------------------------#
utils.py 文件源码 项目:lens 作者: ASIDataScience 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip):
    """Compute a bivariate kde using scipy."""
    data = np.c_[x, y]
    kde = stats.gaussian_kde(data.T)
    data_std = data.std(axis=0, ddof=1)
    if isinstance(bw, string_types):
        bw = "scotts" if bw == "scott" else bw
        bw_x = getattr(kde, "%s_factor" % bw)() * data_std[0]
        bw_y = getattr(kde, "%s_factor" % bw)() * data_std[1]
    elif np.isscalar(bw):
        bw_x, bw_y = bw, bw
    else:
        msg = ("Cannot specify a different bandwidth for each dimension "
               "with the scipy backend. You should install statsmodels.")
        raise ValueError(msg)
    x_support = _kde_support(data[:, 0], bw_x, gridsize, cut, clip[0])
    y_support = _kde_support(data[:, 1], bw_y, gridsize, cut, clip[1])
    xx, yy = np.meshgrid(x_support, y_support)
    z = kde([xx.ravel(), yy.ravel()]).reshape(xx.shape)
    return xx, yy, z
synthetic.py 文件源码 项目:Aurora 作者: upul 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def spiral(num_cls, dim, point_per_cls, rnd_state=1024):
    np.random.seed(rnd_state)
    points_per_cls = 100  # number of points per class
    dim = 2  # dimensionality
    num_cls = 3  # number of classes
    X_data = np.zeros((points_per_cls * num_cls, dim))
    y_data = np.zeros(points_per_cls * num_cls, dtype='uint8')
    for j in range(num_cls):
        ix = range(points_per_cls * j, points_per_cls * (j + 1))
        r = np.linspace(0.0, 1, points_per_cls)
        t = np.linspace(j * 4, (j + 1) * 4, points_per_cls) + np.random.randn(points_per_cls) * 0.2  # theta
        X_data[ix] = np.c_[r * np.sin(t), r * np.cos(t)]
        y_data[ix] = j

    y_data_encoded = np.zeros((points_per_cls * num_cls, num_cls))
    y_data_encoded[range(points_per_cls * num_cls), y_data] = 1
    return X_data, y_data, y_data_encoded
Logistic_Regressor_binary.py 文件源码 项目:learning-rank-public 作者: andreweskeclarke 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def gradient(x0, X, y, alpha):
    # gradient of the logistic loss

    w, c = x0[1:137], x0[0]

    #print("c is " + str(c))
    z = X.dot(w) + c
    z = phi(y * z)
    z0 = (z - 1) * y
    grad_w = np.matmul(z0,X) / X.shape[0] + alpha * w
    grad_c = z0.sum() / X.shape[0]

    grad_c = np.array(grad_c)
    #print(grad_w[0,1:5])
    return np.c_[([grad_c], grad_w)]


##### Stochastic Gradient Descent Optimiser ######
Logistic_Regressor_binary.py 文件源码 项目:learning-rank-public 作者: andreweskeclarke 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def average_ndcg(labels, query_ids, predicted_labels):
    ndcg_list = np.zeros(len(set(query_ids)))
    k = 0
    for i in set(query_ids):
        idx = [query_ids == i]
        orders = np.c_[labels[idx],predicted_labels[idx]]

        sorted_orders = orders[orders[:,1].argsort()[::-1]][:,0]
        ndcg_list[k] = ndcg(sorted_orders)

        k +=1
        if k%2000 == 0:
            print(str(k) + " queries calculated")
            print("mean ndcg so far: " + str(np.mean(ndcg_list[0:k])))
    return np.mean(ndcg_list)


# average ndcg is 0.26333
Logistic_Regressor.py 文件源码 项目:learning-rank-public 作者: andreweskeclarke 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def average_ndcg(labels, query_ids, predicted_labels):
    ndcg_list = np.zeros(len(set(query_ids)))
    k = 0
    for i in set(query_ids):
        idx = [query_ids == i]
        orders = np.c_[labels[idx],predicted_labels[idx]]

        sorted_orders = orders[orders[:,1].argsort()[::-1]][:,0]
        ndcg_list[k] = ndcg(sorted_orders)

        k +=1
        if k%2000 == 0:
            print(str(k) + " queries calculated")
            print("mean ndcg so far: " + str(np.mean(ndcg_list[0:k])))
    return np.mean(ndcg_list)


# average ndcg is 0.26333
rulsif.py 文件源码 项目:shift-detect 作者: paolodedios 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def computeGaussianWidthCandidates(self, referenceSamples=None, testSamples=None) :
        """
        Compute a candidate list of Gaussian kernel widths. The best width will be
        selected via cross-validation
        """
        allSamples     = numpy.c_[referenceSamples, testSamples]
        medianDistance = self.getMedianDistanceBetweenSamples(allSamples.T)

        return medianDistance * numpy.array([0.6, 0.8, 1, 1.2, 1.4])
BaseISC.py 文件源码 项目:pyISC 作者: STREAM3 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _fit(self,X,y=None):
        if isinstance(X, pyisc.DataObject) and y is None:
            assert y is None # Contained in the data object
            self.class_column = X.class_column
            if self.class_column >= 0:
                self.classes_ = X.classes_

            self._anomaly_detector._SetParams(
                0,
                -1 if X.class_column is None else X.class_column,
                self.anomaly_threshold,
                1 if self.is_clustering else 0
            )
            self._anomaly_detector._TrainData(X)
            return self
        if isinstance(X, ndarray):
            class_column = -1
            data_object = None
            assert X.ndim <= 2
            if X.ndim == 2:
                max_class_column = X.shape[1]
            else:
                max_class_column = 1
            if isinstance(y, list) or isinstance(y, ndarray):
                assert len(X) == len(y)
                class_column = max_class_column
                data_object = pyisc.DataObject(numpy.c_[X, y], class_column=class_column)
            elif y is None or int(y) == y and y > -1 and y <= max_class_column:
                self.class_column = y
                data_object = pyisc.DataObject(X,class_column=y)

            if data_object is not None:
                return self._fit(data_object)

        raise ValueError("Unknown type of data to fit X, y:", type(X), type(y))
BaseISC.py 文件源码 项目:pyISC 作者: STREAM3 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _convert_to_data_object_in_scoring(self, X, y):
        data_object = None
        if isinstance(y, list) or isinstance(y, ndarray):
            assert X.ndim == 2 and self.class_column == X.shape[1] or X.ndim == 1 and self.class_column == 1
            data_object = pyisc.DataObject(numpy.c_[X, y], class_column=self.class_column,classes=self.classes_)
        else:
            assert self.class_column == y
            data_object = pyisc.DataObject(X, class_column=self.class_column,classes=self.classes_ if y is not None else None)
        return data_object
BaseISC.py 文件源码 项目:pyISC 作者: STREAM3 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def loglikelihood(self,X,y=None):
        assert isinstance(X, ndarray) and (self.class_column is None and y is None or len(y) == len(X))

        if y is not None:
            return self._anomaly_detector._LogProbabilityOfData(pyisc.DataObject(c_[X,y], class_column=len(X[0])), len(X)).sum()
        else:
            return self._anomaly_detector._LogProbabilityOfData(pyisc.DataObject(X), len(X)).sum()
test_DataObject.py 文件源码 项目:pyISC 作者: STREAM3 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_dataobject_set_column_values(self):
        X = array([norm(1.0).rvs(10) for _ in range(1000)])
        y = [None] * 1000

        DO = DataObject(c_[X,y], class_column=len(X[0]))
        assert_equal(len(X[0]), DO.class_column)
        assert_equal(unique(y), DO.classes_)

        classes=[None] + ['1', '2', '3', '4', '5']
        DO = DataObject(c_[X,y], class_column=len(X[0]), classes=classes)
        assert_equal(len(X[0]), DO.class_column)
        assert_equal(classes, DO.classes_)

        X2 = DO.as_2d_array()
        assert_allclose(X2.T[:-1].T.astype(float), X)
        assert_equal(X2.T[-1],y)

        new_y = ["%i"%(divmod(i,5)[1]+1) for i in range(len(X))]
        DO.set_column_values(len(X[0]), new_y)

        assert_equal(len(X[0]), DO.class_column)
        assert_equal([None]+list(unique(new_y)), DO.classes_)

        X2 = DO.as_2d_array()
        assert_allclose(X2.T[:-1].T.astype(float), X)
        assert_equal(X2.T[-1], new_y)
test_SklearnOutlierDetection.py 文件源码 项目:pyISC 作者: STREAM3 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_outlier_detection(self):
        print "Start of test"
        n_samples = 1000
        norm_dist = stats.norm(0, 1)

        truth = np.ones((n_samples,))
        truth[-100:] = -1

        X0 = norm_dist.rvs(n_samples)
        X = np.c_[X0*5, X0+norm_dist.rvs(n_samples)*2]

        uniform_dist = stats.uniform(-10,10)

        X[-100:] = np.c_[uniform_dist.rvs(100),uniform_dist.rvs(100)]

        outlier_detector = pyisc.SklearnOutlierDetector(
            100.0/n_samples,
            pyisc.P_Gaussian([0,1])
        )

        outlier_detector.fit(X, np.array([1]*len(X)))


        self.assertLess(outlier_detector.threshold_, 0.35)
        self.assertGreater(outlier_detector.threshold_, 0.25)

        predictions = outlier_detector.predict(X, np.array([1]*len(X)))

        accuracy =  sum(truth == predictions)/float(n_samples)

        print "accuracy", accuracy
        self.assertGreater(accuracy, 0.85)


问题


面经


文章

微信
公众号

扫码关注公众号