python类c_()的实例源码

recipe-577591.py 文件源码 项目:code 作者: ActiveState 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def array2PIL(arr, size):
    mode = 'RGBA'
    arr = arr.reshape(arr.shape[0]*arr.shape[1], arr.shape[2])
    if len(arr[0]) == 3:
        arr = numpy.c_[arr, 255*numpy.ones((len(arr),1), numpy.uint8)]
    return Image.frombuffer(mode, size, arr.tostring(), 'raw', mode, 0, 1)
points.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def best_fit_plane(self):
        """Fits a plane to the point cloud using least squares.

        Returns
        -------
        :obj:`tuple` of :obj:`numpy.ndarray` of float
            A normal vector to and point in the fitted plane.
        """
        X = np.c_[self.x_coords, self.y_coords, np.ones(self.num_points)]
        y = self.z_coords
        A = X.T.dot(X)
        b = X.T.dot(y)
        w = np.linalg.inv(A).dot(b)
        n = np.array([w[0], w[1], -1])
        n = n / np.linalg.norm(n)
        n = Direction(n, self._frame)
        x0 = self.mean()
        return n, x0
bbox_regressor.py 文件源码 项目:PyMDNet 作者: HungWei-Andy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def predict_bbox_regressor(model, feat, ex_boxes):
  if ex_boxes.size == 0:
    return np.array([]).reshape(-1, 4)

  # predict regression targets
  Y = np.dot(feat, model.Beta[:-1]) + model.Beta[-1]

  # invert transformation
  Y = dot(Y, model.T_inv)

  # read out prediction
  dst_size = Y[:, 2:]
  dst_ctr = Y[:, 2:]

  src_size = ex_boxes[:, 2:]
  src_ctr = ex_boxes[:, :2] + 0.5 * src_size

  pred_size = np.exp(dst_size) * src_size
  pred_ctr = dst_ctr * src_ctr + src_ctr

  pred = np.c_[pred_ctr - 0.5 * pred_size, pred_size]

  return pred
bbox_regressor.py 文件源码 项目:PyMDNet 作者: HungWei-Andy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_examples(bbox, gt):
  # compute overlap ratio
  O = overlap_ratio(bbox, gt)

  # compute answer
  src_size = bbox[:, 2:]
  src_ctr = bbox[:, :2] + 0.5 * src_size

  gt_size = gt[2:]
  gt_ctr = gt[:2] + 0.5 * gt_size

  dst_size = np.log(gt_size / src_size)
  dst_ctr = (gt_ctr - src_ctr) * 1.0 / src_ctr

  Y = np.c_[dst_ctr, dst_size]

  return Y, O
UXO_TEM_Widget.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def computeRotMatrix(self,Phi=False):

        #######################################
        # COMPUTE ROTATION MATRIX SUCH THAT m(t) = A*L(t)*A'*Hp
        # Default set such that phi1,phi2 = 0 is UXO pointed towards North

        if Phi is False:
            phi1 = np.radians(self.phi[0])
            phi2 = np.radians(self.phi[1])
            phi3 = np.radians(self.phi[2])
        else:
            phi1 = np.radians(Phi[0])           # Roll (CCW)
            phi2 = np.radians(Phi[1])           # Inclination (+ve is nose pointing down)
            phi3 = np.radians(Phi[2])           # Declination (degrees CW from North)

        # A1 = np.r_[np.c_[np.cos(phi1),-np.sin(phi1),0.],np.c_[np.sin(phi1),np.cos(phi1),0.],np.c_[0.,0.,1.]] # CCW Rotation about z-axis
        # A2 = np.r_[np.c_[1.,0.,0.],np.c_[0.,np.cos(phi2),np.sin(phi2)],np.c_[0.,-np.sin(phi2),np.cos(phi2)]] # CW Rotation about x-axis (rotates towards North)
        # A3 = np.r_[np.c_[np.cos(phi3),-np.sin(phi3),0.],np.c_[np.sin(phi3),np.cos(phi3),0.],np.c_[0.,0.,1.]] # CCW Rotation about z-axis (direction of head of object)

        A1 = np.r_[np.c_[np.cos(phi1),np.sin(phi1),0.],np.c_[-np.sin(phi1),np.cos(phi1),0.],np.c_[0.,0.,1.]] # CW Rotation about z-axis
        A2 = np.r_[np.c_[1.,0.,0.],np.c_[0.,np.cos(phi2),np.sin(phi2)],np.c_[0.,-np.sin(phi2),np.cos(phi2)]] # CW Rotation about x-axis (rotates towards North)
        A3 = np.r_[np.c_[np.cos(phi3),np.sin(phi3),0.],np.c_[-np.sin(phi3),np.cos(phi3),0.],np.c_[0.,0.,1.]] # CW Rotation about z-axis (direction of head of object)

        return np.dot(A3,np.dot(A2,A1))
UXO_TEM_Widget.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def defineSensorLoc(self,XYZ):
        #############################################
        # DEFINE TRANSMITTER AND RECEIVER LOCATIONS
        #
        # XYZ: N X 3 array containing transmitter center locations
        # **NOTE** for this sensor, we know where the receivers are relative to transmitters
        self.TxLoc = XYZ

        dx,dy = np.meshgrid([-0.8,-0.4,0.,0.4,0.8],[-0.8,-0.4,0.,0.4,0.8])
        dx = mkvc(dx)
        dy = mkvc(dy)

        N = np.shape(XYZ)[0]

        X = np.kron(XYZ[:,0],np.ones((25))) + np.kron(np.ones((N)),dx)
        Y = np.kron(XYZ[:,1],np.ones((25))) + np.kron(np.ones((N)),dy)
        Z = np.kron(XYZ[:,2],np.ones((25)))

        self.RxLoc = np.c_[X,Y,Z]

        self.TxID = np.kron(np.arange(1,np.shape(XYZ)[0]+1),np.ones((25)))
        self.RxComp = np.kron(3*np.ones(np.shape(XYZ)[0]),np.ones((25)))
UXO_TEM_Widget.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def updatePolarizations(self,r0,UB):

        # Set operator and solution array
        Hp = self.computeHp(r0=r0)
        Brx = self.computeBrx(r0=r0)
        P = self.computeP(Hp,Brx)
        dunc = self.dunc
        dobs = self.dobs

        K = np.shape(dobs)[1]
        q = np.zeros((6,K))

        lb = np.zeros(6)
        ub = UB*np.ones(6)

        for kk in range(0,K):

            LHS = P/np.c_[dunc[:,kk],dunc[:,kk],dunc[:,kk],dunc[:,kk],dunc[:,kk],dunc[:,kk]]
            RHS = dobs[:,kk]/dunc[:,kk]
            Sol = op.lsq_linear(LHS,RHS,bounds=(lb,ub),tol=1e-5)
            q[:,kk] = Sol.x

        self.q = q
UXO_TEM_Widget.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def updatePolarizations(self,r0,UB):

        # Set operator and solution array
        Hp = self.computeHp(r0=r0)
        Brx = self.computeBrx(r0=r0)
        P = self.computeP(Hp,Brx)
        dunc = self.dunc
        dobs = self.dobs

        K = np.shape(dobs)[1]
        q = np.zeros((6,K))

        lb = np.zeros(6)
        ub = UB*np.ones(6)

        for kk in range(0,K):

            LHS = P/np.c_[dunc[:,kk],dunc[:,kk],dunc[:,kk],dunc[:,kk],dunc[:,kk],dunc[:,kk]]
            RHS = dobs[:,kk]/dunc[:,kk]
            Sol = op.lsq_linear(LHS,RHS,bounds=(lb,ub),tol=1e-7)
            q[:,kk] = Sol.x

        self.q = q
Loop.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def analytic_infinite_wire(obsloc,wireloc,orientation,I=1.):
    """
    Compute the response of an infinite wire with orientation 'orientation'
    and current I at the obsvervation locations obsloc

    Output:
    B: magnetic field [Bx,By,Bz]
    """

    n,d = obsloc.shape
    t,d = wireloc.shape
    d = np.sqrt(np.dot(obsloc**2.,np.ones([d,t]))+np.dot(np.ones([n,d]),(wireloc.T)**2.)
    - 2.*np.dot(obsloc,wireloc.T))
    distr = np.amin(d, axis=1, keepdims = True)
    idxmind = d.argmin(axis=1)
    r = obsloc - wireloc[idxmind]

    orient = np.c_[[orientation for i in range(obsloc.shape[0])]]
    B = (mu_0*I)/(2*np.pi*(distr**2.))*np.cross(orientation,r)

    return B
infer.py 文件源码 项目:DriverPower 作者: smshuai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def predict_with_glm(X, y, model):
    """ Predict number of mutation with GLM.

    Args:
        X (np.array): feature matrix.
        y (pd.df): response.
        model (dict): model meta-data.

    Returns:
        np.array: array of predictions.

    """
    # Add const. to X
    X = np.c_[X, np.ones(X.shape[0])]
    if model['model_name'] == 'Binomial':
        pred = np.array(model['model'].predict(X) * y.length * y.N)
    elif model['model_name'] == 'NegativeBinomial':
        pred = np.array(model['model'].predict(X, exposure=(y.length * y.N).values + 1))
    else:
        sys.stderr.write('Wrong model name in model info: {}. Need Binomial or NegativeBinomial.'.format(model['model_name']))
        sys.exit(1)
    return pred
BaseMesh.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def normals(self):
        """Face Normals

        :rtype: numpy.array
        :return: normals, (sum(nF), dim)
        """
        if self.dim == 2:
            nX = np.c_[
                np.ones(self.nFx), np.zeros(self.nFx)
            ]
            nY = np.c_[
                np.zeros(self.nFy), np.ones(self.nFy)
            ]
            return np.r_[nX, nY]
        elif self.dim == 3:
            nX = np.c_[
                np.ones(self.nFx), np.zeros(self.nFx), np.zeros(self.nFx)
            ]
            nY = np.c_[
                np.zeros(self.nFy), np.ones(self.nFy), np.zeros(self.nFy)
            ]
            nZ = np.c_[
                np.zeros(self.nFz), np.zeros(self.nFz), np.ones(self.nFz)
            ]
            return np.r_[nX, nY, nZ]
BaseMesh.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def tangents(self):
        """Edge Tangents

        :rtype: numpy.array
        :return: normals, (sum(nE), dim)
        """
        if self.dim == 2:
            tX = np.c_[
                np.ones(self.nEx), np.zeros(self.nEx)
            ]
            tY = np.c_[
                np.zeros(self.nEy), np.ones(self.nEy)
            ]
            return np.r_[tX, tY]
        elif self.dim == 3:
            tX = np.c_[
                np.ones(self.nEx), np.zeros(self.nEx), np.zeros(self.nEx)
            ]
            tY = np.c_[
                np.zeros(self.nEy), np.ones(self.nEy), np.zeros(self.nEy)
            ]
            tZ = np.c_[
                np.zeros(self.nEz), np.zeros(self.nEz), np.ones(self.nEz)
            ]
            return np.r_[tX, tY, tZ]
test_utils.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_invPropertyTensor2D(self):
        M = discretize.TensorMesh([6, 6])
        a1 = np.random.rand(M.nC)
        a2 = np.random.rand(M.nC)
        a3 = np.random.rand(M.nC)
        prop1 = a1
        prop2 = np.c_[a1, a2]
        prop3 = np.c_[a1, a2, a3]

        for prop in [4, prop1, prop2, prop3]:
            b = invPropertyTensor(M, prop)
            A = makePropertyTensor(M, prop)
            B1 = makePropertyTensor(M, b)
            B2 = invPropertyTensor(M, prop, returnMatrix=True)

            Z = B1*A - sp.identity(M.nC*2)
            self.assertTrue(np.linalg.norm(Z.todense().ravel(), 2) < TOL)
            Z = B2*A - sp.identity(M.nC*2)
            self.assertTrue(np.linalg.norm(Z.todense().ravel(), 2) < TOL)
test_utils.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_TensorType3D(self):
        M = discretize.TensorMesh([6, 6, 7])
        a1 = np.random.rand(M.nC)
        a2 = np.random.rand(M.nC)
        a3 = np.random.rand(M.nC)
        a4 = np.random.rand(M.nC)
        a5 = np.random.rand(M.nC)
        a6 = np.random.rand(M.nC)
        prop1 = a1
        prop2 = np.c_[a1, a2, a3]
        prop3 = np.c_[a1, a2, a3, a4, a5, a6]

        for ii, prop in enumerate([4, prop1, prop2, prop3]):
            self.assertTrue(TensorType(M, prop) == ii)

        self.assertRaises(Exception, TensorType, M, np.c_[a1, a2, a3, a3])
        self.assertTrue(TensorType(M, None) == -1)
test_utils.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_invPropertyTensor3D(self):
        M = discretize.TensorMesh([6, 6, 6])
        a1 = np.random.rand(M.nC)
        a2 = np.random.rand(M.nC)
        a3 = np.random.rand(M.nC)
        a4 = np.random.rand(M.nC)
        a5 = np.random.rand(M.nC)
        a6 = np.random.rand(M.nC)
        prop1 = a1
        prop2 = np.c_[a1, a2, a3]
        prop3 = np.c_[a1, a2, a3, a4, a5, a6]

        for prop in [4, prop1, prop2, prop3]:
            b = invPropertyTensor(M, prop)
            A = makePropertyTensor(M, prop)
            B1 = makePropertyTensor(M, b)
            B2 = invPropertyTensor(M, prop, returnMatrix=True)

            Z = B1*A - sp.identity(M.nC*3)
            self.assertTrue(np.linalg.norm(Z.todense().ravel(), 2) < TOL)
            Z = B2*A - sp.identity(M.nC*3)
            self.assertTrue(np.linalg.norm(Z.todense().ravel(), 2) < TOL)
test_cyl.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def getError(self):

        funR = lambda r, z: np.sin(2.*np.pi*r)
        funZ = lambda r, z: np.sin(2.*np.pi*z)

        sol = lambda r, t, z: (2*np.pi*r*np.cos(2*np.pi*r) + np.sin(2*np.pi*r))/r + 2*np.pi*np.cos(2*np.pi*z)

        Fc = cylF2(self.M, funR, funZ)
        Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]]
        F = self.M.projectFaceVector(Fc)

        divF = self.M.faceDiv.dot(F)
        divF_ana = call3(sol, self.M.gridCC)

        err = np.linalg.norm((divF-divF_ana), np.inf)
        return err
test_cyl.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def getError(self):

        funR = lambda r, z: np.sin(2.*np.pi*z) * np.cos(np.pi*r)
        funZ = lambda r, z: np.sin(3.*np.pi*z) * np.cos(2.*np.pi*r)

        Fc = cylF2(self.M, funR, funZ)
        Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]]
        F = self.M.projectFaceVector(Fc)

        aveF = self.M.aveF2CCV * F

        aveF_anaR = funR(self.M.gridCC[:, 0], self.M.gridCC[:, 2])
        aveF_anaZ = funZ(self.M.gridCC[:, 0], self.M.gridCC[:, 2])

        aveF_ana = np.hstack([aveF_anaR, aveF_anaZ])

        err = np.linalg.norm((aveF-aveF_ana), np.inf)
        return err
sdf.py 文件源码 项目:meshpy 作者: BerkeleyAutomation 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def surface_points(self, grid_basis=True):
        """Returns the points on the surface.

        Parameters
        ----------
        grid_basis : bool
            If False, the surface points are transformed to the world frame.
            If True (default), the surface points are left in grid coordinates.

        Returns
        -------
        :obj:`tuple` of :obj:`numpy.ndarray` of int, :obj:`numpy.ndarray` of float
            The points on the surface and the signed distances at those points.
        """
        surface_points = np.where(np.abs(self.data_) < self.surface_thresh_)
        x = surface_points[0]
        y = surface_points[1]
        z = surface_points[2]
        surface_points = np.c_[x, np.c_[y, z]]
        surface_vals = self.data_[surface_points[:,0], surface_points[:,1], surface_points[:,2]]
        if not grid_basis:
            surface_points = self.transform_pt_grid_to_obj(surface_points.T)
            surface_points = surface_points.T

        return surface_points, surface_vals
utils.py 文件源码 项目:tensorpac 作者: EtienneCmb 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _check_freq(f):
    """Check the frequency definition."""
    f = np.atleast_2d(np.asarray(f))
    #
    if len(f.reshape(-1)) == 1:
        raise ValueError("The length of f should at least be 2.")
    elif 2 in f.shape:  # f of shape (N, 2) or (2, N)
        if f.shape[1] is not 2:
            f = f.T
    elif np.squeeze(f).shape == (4,):  # (fstart, fend, fwidth, fstep)
        f = _pair_vectors(*tuple(np.squeeze(f)))
    else:  # Sequential
        f = f.reshape(-1)
        f.sort()
        f = np.c_[f[0:-1], f[1::]]
    return f
utils.py 文件源码 项目:pisap 作者: neurospin 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def convert_mask_to_locations(mask):
    """ Return the converted Cartesian mask as sampling locations.

    Parameters
    ----------
    mask: np.ndarray, {0,1}
        2D matrix, not necessarly a square matrix.

    Returns
    -------
    samples_locations: np.ndarray
        list of the samples between [-0.5, 0.5[.
    """
    row, col = np.where(mask == 1)
    row = row.astype("float") / mask.shape[0] - 0.5
    col = col.astype("float") / mask.shape[1] - 0.5
    return np.c_[row, col]
test_double.py 文件源码 项目:l1l2py 作者: slipguru 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _test_double_optimization():
    """Test double optimization on a simple example."""
    # A simple sparse-sum function
    X = [[1, 2], [3, 4], [5, 6]]
    y = [sum(x) for x in X]
    T = [[7, 8], [9, 10], [2, 1]]

    # noisy variables
    np.random.seed(0)
    X = np.c_[X, np.random.random((3, 100))]
    T = np.c_[T, np.random.random((3, 100))]    

    # Select the first 2 variables and calculate a linear model on them
    dstep = DoubleStepEstimator(Lasso(tau=1.0), RidgeRegression(mu=0.0)).train(X, y)

    # Coefficients
    lasso = dstep.selector
    ridge = dstep.estimator
    assert_array_almost_equal([0.90635646, 0.90635646], lasso.beta[:2])
    assert_array_almost_equal([1.0, 1.0], ridge.beta)
    assert_array_almost_equal([1.0, 1.0], dstep.beta[:2])

    # Prediction
    y_ = dstep.predict(T)
    assert_array_almost_equal([15., 19., 3.], y_)
terrain.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def generate_hills(width, height, nhills):
    '''
    @param width float, terrain width
    @param height float, terrain height
    @param nhills int, #hills to gen. #hills actually generted is sqrt(nhills)^2
    '''
    # setup coordinate grid
    xmin, xmax = -width/2.0, width/2.0
    ymin, ymax = -height/2.0, height/2.0
    x, y = np.mgrid[xmin:xmax:STEP, ymin:ymax:STEP]
    pos = np.empty(x.shape + (2,))
    pos[:, :, 0] = x; pos[:, :, 1] = y

    # generate hilltops
    xm, ym = np.mgrid[xmin:xmax:width/np.sqrt(nhills), ymin:ymax:height/np.sqrt(nhills)]
    mu = np.c_[xm.flat, ym.flat]
    sigma = float(width*height)/(nhills*8)
    for i in range(mu.shape[0]):
        mu[i] = multivariate_normal.rvs(mean=mu[i], cov=sigma)

    # generate hills
    sigma = sigma + sigma*np.random.rand(mu.shape[0])
    rvs = [ multivariate_normal(mu[i,:], cov=sigma[i]) for i in range(mu.shape[0]) ]
    hfield = np.max([ rv.pdf(pos) for rv in rvs ], axis=0)
    return x, y, hfield
checkerboard.py 文件源码 项目:dataset-shift-osdc16 作者: pprett 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def generate_data(sample_size=200, pd=[[0.4, 0.4], [0.1, 0.1]]):
    pd = np.array(pd)
    pd /= pd.sum()
    offset = 50
    bins = np.r_[np.zeros((1,)), np.cumsum(pd)]
    bin_counts = np.histogram(np.random.rand(sample_size), bins)[0]
    data = np.empty((0, 2))
    targets = []
    for ((i, j), p), count in zip(np.ndenumerate(pd), bin_counts):
        xs = np.random.uniform(low=0.0, high=50.0, size=count) + j * offset
        ys = np.random.uniform(low=0.0, high=50.0, size=count) + -i * offset
        data = np.vstack((data, np.c_[xs, ys]))
        if i == j:
            targets.extend([1] * count)
        else:
            targets.extend([-1] * count)
    return np.c_[data, targets]
1logistic_regression.py 文件源码 项目:Machine-Learning-Algorithms 作者: PacktPublishing 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def show_classification_areas(X, Y, lr):
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(30, 25))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
    plt.xlabel('X')
    plt.ylabel('Y')

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())

    plt.show()
brains.py 文件源码 项目:PengjuStock 作者: dadatou20089 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_decision_boundary(X, Y, model):
    # X - some data in 2dimensional np.array
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
                         np.arange(y_min, y_max, 0.01))

    # here "model" is your model's prediction (classification) function
    Z = model(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
    plt.axis('off')

    for i in x:
        print i

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)


#???????
test_block_diagram.py 文件源码 项目:simupy 作者: sixpearls 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_double_integrator(m=1000, b=50, d=1):
    N = 2
    sys = LTISystem(
        np.c_[[0, 1], [1, -b/m]],  # A
        np.r_[0, d/m],  # B
        # np.r_[0, 1],  # C
    )

    def ref_func(*args):
        if len(args) == 1:
            x = np.zeros(N)
        else:
            x = args[1]
        return np.r_[d/m, 0]-x
    ref = SystemFromCallable(ref_func, N, N)

    return sys, ref
test_block_diagram.py 文件源码 项目:simupy 作者: sixpearls 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_electromechanical(b=1, R=1, L=1, K=np.pi/5, M=1):
    # TODO: determine good reference and/or initial_condition
    # TODO: determine good default values for b, R, L, M
    N = 3
    sys = LTISystem(
        np.c_[  # A
            [0, 0, 0],
            [1, -b/M, -K/L],
            [0, K/M, -R/L]
        ],
        np.r_[0, 0, 1/L],  # B
        # np.r_[1, 0, 0],  # C
    )
    sys.initial_condition = np.ones(N)

    def ref_func(*args):
        if len(args) == 1:
            x = np.zeros(N)
        else:
            x = args[1]
        return np.r_[0, 0, 0]-x
    ref = SystemFromCallable(ref_func, N, N)

    return sys, ref
test_block_diagram.py 文件源码 项目:simupy 作者: sixpearls 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def get_cart_pendulum(m=1, M=3, L=0.5, g=9.81, pedant=False):
    N = 4
    sys = LTISystem(
        np.c_[  # A
            [0, 0, 0, 0],
            [1, 0, 0, 0],
            [0, m*g/M, 0, (-1)**(pedant)*(m+M)*g/(M*L)],
            [0, 0, 1, 0]
        ],
        np.r_[0, 1/M, 0, 1/(M*L)],  # B
        # np.r_[1, 0, 1, 0]  # C
    )
    sys.initial_condition = np.r_[0, 0, np.pi/3, 0]

    def ref_func(*args):
        if len(args) == 1:
            x = np.zeros(N)
        else:
            x = args[1]
        return np.zeros(N)-x
    ref = SystemFromCallable(ref_func, N, N)

    return sys, ref
__init__.py 文件源码 项目:simupy 作者: sixpearls 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def update_equation_function(self, *args):
        event_var = self.event_variable_equation_function(*args)
        if self.condition_idx is None:
            self.condition_idx = np.where(np.all(np.r_[
                    np.c_[[[True]], event_var >= self.event_bounds],
                    np.c_[event_var <= self.event_bounds, [[True]]]
                    ], axis=0))[0][0]
        else:
            sq_dist = (event_var - self.event_bounds)**2
            crossed_root_idx = np.where(sq_dist == np.min(sq_dist))[1][0]
            if crossed_root_idx == self.condition_idx:
                self.condition_idx += 1
            elif crossed_root_idx == self.condition_idx-1:
                self.condition_idx -= 1
            else:
                warnings.warn("SwitchedSystem did not cross a neighboring " +
                              "boundary. This may indicate an integration " +
                              "error. Continuing without updating " +
                              "condition_idx", UserWarning)
        return self.state_update_equation_function(*args)
synth_utils.py 文件源码 项目:SynthText 作者: ankush-me 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def plane2xyz(center, ij, plane):
        """
        converts image pixel indices to xyz on the PLANE.

        center : 2-tuple
        ij : nx2 int array
        plane : 4-tuple

        return nx3 array.
        """
        ij = np.atleast_2d(ij)
        n = ij.shape[0]
        ij = ij.astype('float')
        xy_ray = (ij-center[None,:]) / DepthCamera.f
        z = -plane[2]/(xy_ray.dot(plane[:2])+plane[3])
        xyz = np.c_[xy_ray, np.ones(n)] * z[:,None]
        return xyz


问题


面经


文章

微信
公众号

扫码关注公众号