python类split()的实例源码

translate.py 文件源码 项目:chainer-qrnn 作者: musyoku 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def dump_source_translation(model, source_buckets, vocab_inv_source, vocab_inv_target, beam_width=8, normalization_alpha=0):
    for source_bucket in source_buckets:
        if beam_width == 1: # greedy
            batchsize = 24
            if len(source_bucket) > batchsize:
                num_sections = len(source_bucket) // batchsize - 1
                if len(source_bucket) % batchsize > 0:
                    num_sections += 1
                indices = [(i + 1) * batchsize for i in range(num_sections)]
                source_sections = np.split(source_bucket, indices, axis=0)
            else:
                source_sections = [source_bucket]

            for source_batch in source_sections:
                translation_batch = translate_greedy(model, source_batch, source_batch.shape[1] * 2, len(vocab_inv_target), beam_width)
                for index in range(len(translation_batch)):
                    source = source_batch[index]
                    translation = translation_batch[index]
                    dump_translation(vocab_inv_source, vocab_inv_target, source, translation)
        else:   # beam search
            for index in range(len(source_bucket)):
                source = source_bucket[index]
                translations = translate_beam_search(model, source, source.size * 2, len(vocab_inv_target), beam_width, normalization_alpha, return_all_candidates=True)
                dump_all_translation(vocab_inv_source, vocab_inv_target, source, translations)
error.py 文件源码 项目:chainer-qrnn 作者: musyoku 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def compute_accuracy(model, buckets, batchsize=100):
    result = []
    for bucket_index, dataset in enumerate(buckets):
        acc = []
        # split into minibatch
        if len(dataset) > batchsize:
            num_sections = len(dataset) // batchsize - 1
            if len(dataset) % batchsize > 0:
                num_sections += 1
            indices = [(i + 1) * batchsize for i in range(num_sections)]
            sections = np.split(dataset, indices, axis=0)
        else:
            sections = [dataset]
        # compute accuracy
        for batch_index, batch in enumerate(sections):
            printr("computing accuracy ... bucket {}/{} (batch {}/{})".format(bucket_index + 1, len(buckets), batch_index + 1, len(sections)))
            acc.append(compute_accuracy_batch(model, batch))

        result.append(sum(acc) / len(acc))
        printr("")

    return result
error.py 文件源码 项目:chainer-qrnn 作者: musyoku 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def compute_perplexity(model, buckets, batchsize=100):
    result = []
    for bucket_index, dataset in enumerate(buckets):
        ppl = []
        # split into minibatch
        if len(dataset) > batchsize:
            num_sections = len(dataset) // batchsize - 1
            if len(dataset) % batchsize > 0:
                num_sections += 1
            indices = [(i + 1) * batchsize for i in range(num_sections)]
            sections = np.split(dataset, indices, axis=0)
        else:
            sections = [dataset]
        # compute accuracy
        for batch_index, batch in enumerate(sections):
            sys.stdout.write("\rcomputing perplexity ... bucket {}/{} (batch {}/{})".format(bucket_index + 1, len(buckets), batch_index + 1, len(sections)))
            sys.stdout.flush()
            ppl.append(compute_perplexity_batch(model, batch))

        result.append(sum(ppl) / len(ppl))

        sys.stdout.write("\r" + stdout.CLEAR)
        sys.stdout.flush()
    return result
animate.py 文件源码 项目:visual_mpc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self):

        dict_ = cPickle.load(open(file_path + '/dict_.pkl', "rb"))
        gen_images = dict_['gen_images']

        self.num_ex = 4
        self.row_list = []

        if 'ground_truth' in dict_:
            ground_truth = dict_['ground_truth']
            if not isinstance(ground_truth, list):
                ground_truth = np.split(ground_truth, ground_truth.shape[1], axis=1)
                ground_truth = [np.squeeze(g) for g in ground_truth]
            ground_truth = ground_truth[1:]

            self.row_list.append((ground_truth, 'Ground Truth'))

        self.row_list.append((gen_images, 'Gen Images'))

        self.build_figure()
cem_controller.py 文件源码 项目:visual_mpc 作者: febert 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def save_distrib_visual(self, full_images, use_genimg = True):
        #assumes full_images is already rescaled to [0,1]
        orig_images = np.split(full_images, full_images.shape[0], axis = 0)
        orig_images = [im.reshape(1,64,64,3) for im in orig_images]

        # the first image of corr_gen_images is the first image of the original images!
        file_path =self.policyparams['current_dir'] + '/videos_distrib'
        if use_genimg:
            cPickle.dump([orig_images, self.corr_gen_images, self.rec_input_distrib, self.desig_pix],
                         open(file_path + '/correction.pkl', 'wb'))
            distrib = make_color_scheme(self.rec_input_distrib)
            distrib = add_crosshairs(distrib, self.desig_pix)
            frame_list = assemble_gif([orig_images, self.corr_gen_images, distrib], num_exp=1)
        else:
            cPickle.dump([orig_images, self.rec_input_distrib],
                         open(file_path + '/correction.pkl', 'wb'))
            distrib = make_color_scheme(self.rec_input_distrib)
            distrib = add_crosshairs(distrib, self.desig_pix)
            frame_list = assemble_gif([orig_images, distrib], num_exp=1)

        npy_to_gif(frame_list, self.policyparams['rec_distrib'])
audiostream_tp.py 文件源码 项目:nupic-example-code 作者: htm-community 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def fft(self, audio, highpass, lowpass):
    """
    Fast fourier transform conditioning

    Output:
    'output' contains the strength of each frequency in the audio signal
    frequencies are marked by its position in 'output':
    frequency = index * rate / buffesize
    output.size = buffersize/2 
    Method:
    Use numpy's FFT (numpy.fft.fft)
    Find the magnitude of the complex numbers returned (abs value)
    Split the FFT array in half, because we have mirror frequencies
     (they're the complex conjugates)
    Use just the first half to apply the bandpass filter

    Great info here: http://stackoverflow.com/questions/4364823/how-to-get-frequency-from-fft-result
    """
    left,right = numpy.split(numpy.abs(numpy.fft.fft(audio)),2)
    output = left[highpass:lowpass]
    return output
test_minibatching.py 文件源码 项目:mean-teacher 作者: CuriousAI 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_batches_from_two_sets():
    data1 = np.array(['a', 'b'])
    data2 = np.array(['c', 'd', 'e'])

    batch_generator = combine_batches(
        eternal_batches(data1, batch_size=1),
        eternal_batches(data2, batch_size=2)
    )

    first_six_batches = list(islice(batch_generator, 6))
    assert [len(batch) for batch in first_six_batches] == [3, 3, 3, 3, 3, 3]

    batch_portions1 = [batch[:1] for batch in first_six_batches]
    batch_portions2 = [batch[1:] for batch in first_six_batches]

    returned1 = np.concatenate(batch_portions1)
    returned2 = np.concatenate(batch_portions2)

    epochs1 = np.split(returned1, 3)
    epochs2 = np.split(returned2, 4)

    assert all(sorted(items) == ['a', 'b'] for items in epochs1)
    assert all(sorted(items) == ['c', 'd', 'e'] for items in epochs2)
test_minibatching.py 文件源码 项目:mean-teacher 作者: CuriousAI 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_stratified_batches():
    data = np.array([('a', -1), ('b', 0), ('c', 1), ('d', -1), ('e', -1)],
                    dtype=[('x', np.str_, 8), ('y', np.int32)])

    assert list(data['x']) == ['a', 'b', 'c', 'd', 'e']
    assert list(data['y']) == [-1, 0, 1, -1, -1]

    batch_generator = training_batches(data, batch_size=3, n_labeled_per_batch=1)

    first_ten_batches = list(islice(batch_generator, 10))

    labeled_batch_portions = [batch[:1] for batch in first_ten_batches]
    unlabeled_batch_portions = [batch[1:] for batch in first_ten_batches]

    labeled_epochs = np.split(np.concatenate(labeled_batch_portions), 5)
    unlabeled_epochs = np.split(np.concatenate(unlabeled_batch_portions), 4)

    assert ([sorted(items['x'].tolist()) for items in labeled_epochs] ==
            [['b', 'c']] * 5)
    assert ([sorted(items['y'].tolist()) for items in labeled_epochs] ==
            [[0, 1]] * 5)
    assert ([sorted(items['x'].tolist()) for items in unlabeled_epochs] ==
            [['a', 'b', 'c', 'd', 'e']] * 4)
    assert ([sorted(items['y'].tolist()) for items in unlabeled_epochs] ==
            [[-1, -1, -1, -1, -1]] * 4)
utils.py 文件源码 项目:chinese-char-rnn 作者: indiejoseph 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_batches(self):
    self.num_batches = int(self.train.size / (self.batch_size * self.seq_length))
    self.num_valid_batches = int(self.valid.size / (self.batch_size * self.seq_length))

    # When the data (tensor) is too small, let's give them a better error message
    if self.num_batches == 0:
      assert False, "Not enough data. Make seq_length and batch_size small."

    self.train = self.train[:self.num_batches * self.batch_size * self.seq_length]
    self.valid = self.valid[:self.num_valid_batches * self.batch_size * self.seq_length]
    xdata = self.train
    ydata = np.copy(self.train)
    ydata[:-1] = xdata[1:]
    ydata[-1] = xdata[0]
    x_valid = self.valid
    y_valid = np.copy(self.valid)
    y_valid[:-1] = x_valid[1:]
    y_valid[-1] = x_valid[0]
    self.x_valid = np.split(x_valid.reshape(self.batch_size, -1), self.num_valid_batches, 1)
    self.y_valid = np.split(y_valid.reshape(self.batch_size, -1), self.num_valid_batches, 1)
    self.x_batches = np.split(xdata.reshape(self.batch_size, -1), self.num_batches, 1)
    self.y_batches = np.split(ydata.reshape(self.batch_size, -1), self.num_batches, 1)
utils.py 文件源码 项目:unet-color 作者: 4g 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def arrange_images(Y):
    concat_image = None
    Y = (Y + 1)/2
    for yi in np.split(Y, 10):
        image = None
        for y in yi:
            img = cv2.merge((y[0, :, :], y[1, :, :], y[2, :, :]))
            if image is None:
                image = img
            else:
                image = np.concatenate((image, img))
        if concat_image is None:
            concat_image = image
        else:
            concat_image = np.concatenate((concat_image, image), axis=1)
    return concat_image
correction_train_flow.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def make_video(file_path, conf):
    print 'reading files from:', file_path
    ground_truth = cPickle.load(open(file_path + '/ground_truth.pkl', "rb"))
    gen_images = cPickle.load(open(file_path + '/gen_image_seq.pkl', "rb"))
    distrib = cPickle.load(open(file_path + '/output_distrib_list.pkl', "rb"))

    ground_truth = np.split(ground_truth, ground_truth.shape[1], axis=1)
    ground_truth = np.squeeze(ground_truth)

    fused_gif = video_prediction.utils_vpred.create_gif.assemble_gif([ground_truth, gen_images, distrib])

    import re
    itr_vis = re.match('.*?([0-9]+)$', conf['visualize']).group(1)
    video_prediction.utils_vpred.create_gif.npy_to_gif(fused_gif, file_path +'/' + conf['experiment_name'] + '_' + str(itr_vis))

    return fused_gif
create_gif.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def comp_video(file_path, conf, suffix = None):
    print 'reading files from:', file_path
    ground_truth = cPickle.load(open(file_path + '/ground_truth.pkl', "rb"))
    gen_images = cPickle.load(open(file_path + '/gen_image_seq.pkl', "rb"))

    ground_truth = np.split(ground_truth, ground_truth.shape[1], axis=1)
    ground_truth = np.squeeze(ground_truth)

    fused_gif = assemble_gif([ground_truth, gen_images])

    itr_vis = re.match('.*?([0-9]+)$', conf['visualize']).group(1)

    if not suffix:
        name = file_path + '/vid_' + conf['experiment_name'] + '_' + str(itr_vis)
    else: name = file_path + '/vid_' + conf['experiment_name'] + '_' + str(itr_vis) + suffix
    npy_to_gif(fused_gif, name)

    return fused_gif
cem_controller.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def save_distrib_visual(self, full_images, use_genimg = True):
        #assumes full_images is already rescaled to [0,1]
        orig_images = np.split(full_images, full_images.shape[0], axis = 0)
        orig_images = [im.reshape(1,64,64,3) for im in orig_images]

        # the first image of corr_gen_images is the first image of the original images!
        file_path =self.policyparams['current_dir'] + '/videos_distrib'
        if use_genimg:
            cPickle.dump([orig_images, self.corr_gen_images, self.rec_input_distrib, self.desig_pix],
                         open(file_path + '/correction.pkl', 'wb'))
            distrib = makegif.pix_distrib_video(self.rec_input_distrib)
            distrib = makegif.add_crosshairs(distrib, self.desig_pix)
            frame_list = makegif.assemble_gif([orig_images, self.corr_gen_images, distrib], num_exp=1)
        else:
            cPickle.dump([orig_images, self.rec_input_distrib],
                         open(file_path + '/correction.pkl', 'wb'))
            distrib = makegif.pix_distrib_video(self.rec_input_distrib)
            distrib = makegif.add_crosshairs(distrib, self.desig_pix)
            frame_list = makegif.assemble_gif([orig_images, distrib], num_exp=1)

        makegif.npy_to_gif(frame_list, self.policyparams['rec_distrib'])
datagenerator.py 文件源码 项目:MNIST-Neural-Net 作者: MLavrentyev 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def genTrainData(self):
        data = []
        with open('../train-data.csv', 'r') as f:
            data = [list(map(int,rec)) for rec in csv.reader(f, delimiter=',')]

        data = np.array(data)
        labels = data[:,0]
        data = np.delete(data, 0, 1)

        data = np.split(data, [(int)(data.shape[0]*.75)])[0]
        labels = np.split(labels, [(int)(labels.shape[0]*.75)])[0]

        testData = np.split(data, [(int)(data.shape[0]*.75)])[1]
        testLabels = np.split(labels, [(int)(labels.shape[0]*.75)])[1]

        return data, labels, testData, testLabels
simulation_tools.py 文件源码 项目:Sisyphus 作者: davidbrandfonbrener 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def run_trial(self, trial_input, t_connectivity = None, use_input = True):

        rnn_inputs = np.split(trial_input, trial_input.shape[0], axis=0)
        state = np.expand_dims(self.init_state[0, :], 0)
        rnn_outputs = []
        rnn_states = []
        for i, rnn_input in enumerate(rnn_inputs):
            if t_connectivity:
                output, state = self.rnn_step(state, rnn_input, t_connectivity[i], use_input)
            else:
                output, state = self.rnn_step(state, rnn_input, np.ones_like(self.W_rec), use_input)

            rnn_outputs.append(output)
            rnn_states.append(state)

        return np.array(rnn_outputs), np.array(rnn_states)


    # apply the RNN to a whole batch of inputs
simulation_tools.py 文件源码 项目:Sisyphus 作者: davidbrandfonbrener 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def run_trials(self, trial_input, batch_size, t_connectivity = None, use_input = True):

        rnn_inputs = np.split(trial_input, trial_input.shape[1], axis=1)
        state = np.expand_dims(self.init_state[0, :], 0)
        state = np.repeat(state, batch_size, 0)
        rnn_outputs = []
        rnn_states = []
        for rnn_input in rnn_inputs:
            if t_connectivity:
                output, state = self.rnn_step(state, rnn_input, t_connectivity[i], use_input)
            else:
                output, state = self.rnn_step(state, rnn_input, np.ones_like(self.W_rec), use_input)

            rnn_outputs.append(output)
            rnn_states.append(state)

        return np.array(rnn_outputs), np.array(rnn_states)
base_classifier.py 文件源码 项目:char-classify 作者: ekatek 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, data, target, hidden_layers):
        """ Must submit either a net configuration, or something to load from """
        if hidden_layers == [] and model_filename == "":
            raise Exception("Must provide a net configuration or a file to load from")

        """ Divide the data into training and test """
        self.trainsize = int(len(data) * 5 / 6)
        self.testsize = len(data) - self.trainsize
        self.x_train, self.x_test = np.split(data, [self.trainsize])
        self.y_train, self.y_test = np.split(target, [self.trainsize])

        """ Create the underlying neural network model """
        self.sizes = [len(data[0])]
        self.sizes.extend(hidden_layers)
        self.sizes.append(len(set(target)))
        self.model = L.Classifier(BaseNetwork(self.sizes))

        """ Create the underlying optimizer """
        self.optimizer = optimizers.Adam()
        self.optimizer.setup(self.model)
relations.py 文件源码 项目:ieml 作者: IEMLdev 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _compute_table_rank(self, contained):
        logger.log(logging.DEBUG, "Computing tables relations")

        tables_rank = [([], []) for _ in range(6)]

        indices = [
            set(l) for l in np.split(contained.indices, contained.indptr)[1:-1]
        ]

        for root in self.dictionary.roots:
            for t0, t1 in combinations(self.dictionary.roots[root], 2):
                commons = [self.dictionary.index[i] for i in indices[t0.index] & indices[t1.index]]

                rank = max(map(lambda t: t.rank, commons))
                tables_rank[rank][0].extend((t0.index, t1.index))
                tables_rank[rank][1].extend((t1.index, t0.index))

        return [coo_matrix(([True]*len(i), (i, j)), shape=self.shape, dtype=np.bool) for i, j in tables_rank]
utils.py 文件源码 项目:Steal-ML 作者: ftramer 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def prepare_faces():
    data = sklearn.datasets.fetch_olivetti_faces('../data', shuffle=False)
    X = data.data
    y = data.target

    X = np.split(X, 40)
    y = np.split(y, 40)

    X_train = [x[0:7, :] for x in X]
    X_test = [x[7:, :] for x in X]
    y_train = [a[0:7] for a in y]
    y_test = [a[7:] for a in y]
    X_train = np.concatenate(X_train)
    X_test = np.concatenate(X_test)
    y_train = pd.Series(np.concatenate(y_train))
    y_test = pd.Series(np.concatenate(y_test))

    scaler = MinMaxScaler(feature_range=(-1, 1))
    X_train = pd.DataFrame(scaler.fit_transform(X_train))
    X_test = pd.DataFrame(scaler.transform(X_test))

    return X_train, y_train, X_test, y_test, scaler
utils.py 文件源码 项目:Steal-ML 作者: ftramer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def prepare_faces():
    data = sklearn.datasets.fetch_olivetti_faces('../data', shuffle=False)
    X = data.data
    y = data.target

    X = np.split(X, 40)
    y = np.split(y, 40)

    X_train = [x[0:7, :] for x in X]
    X_test = [x[7:, :] for x in X]
    y_train = [a[0:7] for a in y]
    y_test = [a[7:] for a in y]
    X_train = np.concatenate(X_train)
    X_test = np.concatenate(X_test)
    y_train = np.concatenate(y_train)
    y_test = np.concatenate(y_test)

    scaler = MinMaxScaler(feature_range=(-1, 1))
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)

    return X_train, y_train, X_test, y_test, scaler


问题


面经


文章

微信
公众号

扫码关注公众号