python类uint32()的实例源码

topology.py 文件源码 项目:Sverchok 作者: Sverchok 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def torus_faces(x, y):
    faces = np.empty((x * y, 4), dtype=np.uint32)
    tmp = np.arange(0, x * y)
    faces[:, 0] = tmp
    faces[:, 1] = np.roll(tmp, -y)
    tmp += 1
    tmp.shape = (x, y)
    tmp[:, y - 1] -= y
    tmp.shape = -1
    faces[:, 3] = tmp
    faces[:, 2] = np.roll(tmp, -y)
    faces.shape = -1
    l_total = np.empty(x * y, dtype=np.uint32)
    l_total[:] = 4
    l_start = np.arange(0, (x * y) * 4, 4, dtype=np.uint32)
    return SvPolygon(l_start, l_total, faces)
benchmark.py 文件源码 项目:indexed_gzip 作者: pauldmccarthy 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def gen_file(fname, nbytes):

    nelems = int(nbytes / 4)

    data = np.random.randint(0, 2 ** 32, nelems, dtype=np.uint32)

    # zero out 10% so there is something to compress
    zeros = np.random.randint(0, nelems, int(nelems / 10.0))
    data[zeros] = 0
    data = data.tostring()

    # write 1GB max at a time - the gzip
    # module doesn't like writing >= 4GB
    # in one go.
    chunksize = 1073741824

    while len(data) > 0:
        chunk = data[:chunksize]
        data  = data[chunksize:]
        with gzip.open(fname, 'ab') as outf:
            outf.write(chunk)
inplus_data_source.py 文件源码 项目:InplusTrader_Linux 作者: zhengwsh 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_risk_free_rate(self, start_date, end_date):
        mongo_dates = self._yield_curve['dates'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
        _dates = np.array([np.uint32(d['date']) for d in mongo_dates])

        tenor = risk_free_helper.get_tenor_for(start_date, end_date)
        tenor = tenor[-1] + tenor[:-1]
        mongo_data = self._yield_curve[tenor].find({}, {"_id":0})
        _table = np.array([d['data'] for d in mongo_data])

        d = start_date.year * 10000 + start_date.month * 100 + start_date.day
        pos = _dates.searchsorted(d)
        if pos > 0 and (pos == len(_dates) or _dates[pos] != d):
            pos -= 1
        while pos >= 0 and np.isnan(_table[pos]):
            # data is missing ...
            pos -= 1

        return _table[pos]
inplus_data_source.py 文件源码 项目:InplusTrader_Linux 作者: zhengwsh 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def available_data_range(self, frequency):
        """
        ??????????????

        :param str frequency: ?????`1d` ?????, `1m` ??????

        :return: (earliest, latest)
        """
        if frequency == '1d':
            mongo_data = self._day_bars[self.INSTRUMENT_TYPE_MAP['INDX']]['000001.XSHG'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
            mongo_data = list(mongo_data)
            s, e = np.uint32(mongo_data[0]['date']), np.uint32(mongo_data[-1]['date'])
            return convert_int_to_date(s).date(), convert_int_to_date(e).date()

        if frequency == '1m':
            raise NotImplementedError
inplus_data_source.py 文件源码 项目:InplusTrader_Linux 作者: zhengwsh 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_risk_free_rate(self, start_date, end_date):
        mongo_dates = self._yield_curve['dates'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
        _dates = np.array([np.uint32(d['date']) for d in mongo_dates])

        tenor = risk_free_helper.get_tenor_for(start_date, end_date)
        tenor = tenor[-1] + tenor[:-1]
        mongo_data = self._yield_curve[tenor].find({}, {"_id":0})
        _table = np.array([d['data'] for d in mongo_data])

        d = start_date.year * 10000 + start_date.month * 100 + start_date.day
        pos = _dates.searchsorted(d)
        if pos > 0 and (pos == len(_dates) or _dates[pos] != d):
            pos -= 1
        while pos >= 0 and np.isnan(_table[pos]):
            # data is missing ...
            pos -= 1

        return _table[pos]
inplus_data_source.py 文件源码 项目:InplusTrader_Linux 作者: zhengwsh 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def available_data_range(self, frequency):
        """
        ??????????????

        :param str frequency: ?????`1d` ?????, `1m` ??????

        :return: (earliest, latest)
        """
        if frequency == '1d':
            mongo_data = self._day_bars[self.INSTRUMENT_TYPE_MAP['INDX']]['000001.XSHG'].find({}, {"_id":0}).sort('date', pymongo.ASCENDING)
            mongo_data = list(mongo_data)
            s, e = np.uint32(mongo_data[0]['date']), np.uint32(mongo_data[-1]['date'])
            return convert_int_to_date(s).date(), convert_int_to_date(e).date()

        if frequency == '1m':
            raise NotImplementedError
gputools.py 文件源码 项目:slitSpectrographBlind 作者: aasensio 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def laplace_stack_gpu(y_gpu, mode='valid'):
  """
  This funtion computes the Laplacian of each slice of a stack of images
  """
  shape = np.array(y_gpu.shape).astype(np.uint32)
  dtype = y_gpu.dtype
  block_size = (6,int(np.floor(512./6./float(shape[0]))),int(shape[0]))
  grid_size = (int(np.ceil(float(shape[1])/block_size[0])),
               int(np.ceil(float(shape[0])/block_size[1])))
  shared_size = int((2+block_size[0])*(2+block_size[1])*(2+block_size[2])
                    *dtype.itemsize)

  preproc = _generate_preproc(dtype, (shape[1],shape[2]))
  mod = SourceModule(preproc + kernel_code, keep=True)

  laplace_fun_gpu = mod.get_function("laplace_stack_same")
  laplace_gpu = cua.empty((y_gpu.shape[0], y_gpu.shape[1], y_gpu.shape[2]),
                          y_gpu.dtype)

  laplace_fun_gpu(laplace_gpu.gpudata, y_gpu.gpudata,
                  block=block_size, grid=grid_size, shared=shared_size)

  return laplace_gpu
gputools.py 文件源码 项目:slitSpectrographBlind 作者: aasensio 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def laplace3d_gpu(y_gpu):

  shape = np.array(y_gpu.shape).astype(np.uint32)
  dtype = y_gpu.dtype
  block_size = (6,int(np.floor(512./6./float(shape[0]))),int(shape[0]))
  grid_size = (int(np.ceil(float(shape[1])/block_size[0])),
               int(np.ceil(float(shape[0])/block_size[1])))
  shared_size = int((2+block_size[0])*(2+block_size[1])*(2+block_size[2])
                    *dtype.itemsize)

  preproc = _generate_preproc(dtype, (shape[1],shape[2]))
  mod = SourceModule(preproc + kernel_code, keep=True)

  laplace_fun_gpu = mod.get_function("laplace3d_same")
  laplace_gpu = cua.empty((y_gpu.shape[0], y_gpu.shape[1], y_gpu.shape[2]),
                          y_gpu.dtype)

  laplace_fun_gpu(laplace_gpu.gpudata, y_gpu.gpudata,
                  block=block_size, grid=grid_size, shared=shared_size)

  return laplace_gpu
gputools.py 文件源码 项目:slitSpectrographBlind 作者: aasensio 项目源码 文件源码 阅读 72 收藏 0 点赞 0 评论 0
def modify_sparse23_gpu(y_gpu, beta):

  shape = np.array(y_gpu.shape).astype(np.uint32)
  gpu_shape = np.array([np.prod(shape),np.prod(shape)])
  gpu_shape = np.uint32(np.ceil(np.sqrt(gpu_shape)))
  dtype = y_gpu.dtype
  block_size = (16,16,1)
  grid_size = (int(np.ceil(float(gpu_shape[1])/block_size[0])),
               int(np.ceil(float(gpu_shape[0])/block_size[1])))

  preproc = _generate_preproc(dtype, np.array(grid_size)
                              * np.array(block_size)[0:1])
  mod = SourceModule(preproc + kernel_code, keep=True)

  modify_alpha23_fun = mod.get_function("modify_alpha23")

  modify_alpha23_fun(y_gpu.gpudata, np.float32(beta), np.uint32(np.prod(shape)),
                     block=block_size, grid=grid_size)
gputools.py 文件源码 项目:slitSpectrographBlind 作者: aasensio 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def modify_sparse_gpu(y_gpu, beta, alpha=2/3):

  shape = np.array(y_gpu.shape).astype(np.uint32)
  gpu_shape = np.array([np.prod(shape),np.prod(shape)])
  gpu_shape = np.uint32(np.ceil(np.sqrt(gpu_shape)))
  dtype = y_gpu.dtype
  block_size = (16,16,1)
  grid_size = (int(np.ceil(float(gpu_shape[1])/block_size[0])),
               int(np.ceil(float(gpu_shape[0])/block_size[1])))

  preproc = _generate_preproc(dtype, np.array(grid_size)
                              * np.array(block_size)[0:1])
  mod = SourceModule(preproc + kernel_code, keep=True)

  modify_alpha_fun = mod.get_function("modify_alpha")

  modify_alpha_fun(y_gpu.gpudata, np.float32(beta),
                   np.float32(alpha), np.uint32(np.prod(shape)),
                     block=block_size, grid=grid_size)
gputools.py 文件源码 项目:slitSpectrographBlind 作者: aasensio 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def project_on_basis_gpu(fs_gpu, basis_gpu):

  basis_length = basis_gpu.shape[0]
  shape = np.array(fs_gpu.shape).astype(np.uint32)
  dtype = fs_gpu.dtype
  block_size = (16,16,1)
  grid_size = (1,int(np.ceil(float(basis_length)/block_size[1])))

  weights_gpu = cua.empty(basis_length, dtype=dtype)

  preproc = _generate_preproc(dtype, shape)
  preproc += '#define BLOCK_SIZE %d\n' % (block_size[0]*block_size[1])
  mod = SourceModule(preproc + projection_code, keep=True)

  projection_fun = mod.get_function("projection")

  projection_fun(weights_gpu.gpudata, fs_gpu.gpudata, basis_gpu.gpudata,
                 np.uint32(basis_length),
                 block=block_size, grid=grid_size)
color_utils.py 文件源码 项目:house-of-enlightenment 作者: house-of-enlightenment 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def hsv2rgb(hsv):
    hsv = np.array(hsv)
    input_shape = hsv.shape
    hsv = hsv.reshape(-1, 3)
    h, s, v = hsv[:, 0] / 255, hsv[:, 1] / 255, hsv[:, 2]

    i = np.uint32(h * 6.0)  # pylint: disable=no-member
    f = (h * 6.0) - i
    p = v * (1.0 - s)
    q = v * (1.0 - s * f)
    t = v * (1.0 - s * (1.0 - f))
    i = i % 6

    rgb = np.zeros_like(hsv, np.uint8)
    v, t, p, q = v.reshape(-1, 1), t.reshape(-1, 1), p.reshape(-1, 1), q.reshape(-1, 1)
    # This could probably be much faster if replaced with np.choose
    rgb[i == 0] = np.hstack([v, t, p])[i == 0]
    rgb[i == 1] = np.hstack([q, v, p])[i == 1]
    rgb[i == 2] = np.hstack([p, v, t])[i == 2]
    rgb[i == 3] = np.hstack([p, q, v])[i == 3]
    rgb[i == 4] = np.hstack([t, p, v])[i == 4]
    rgb[i == 5] = np.hstack([v, p, q])[i == 5]
    rgb[s == 0.0] = np.hstack([v, v, v])[s == 0.0]

    return rgb.reshape(input_shape)
keysight.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def table(self):
        """Return a 2D array of UInt32 representing the sequence"""
        table = np.zeros((len(self.sequence_items), 6), dtype=np.uint32)
        for ct, entry in enumerate(self.sequence_items):
            control_word = SequenceControlWord(\
                init_marker_sequence = 1 if ct==0 else 0, \
                end_marker_sequence = 1 if ct==(len(self.sequence_items) - 1) else 0, \
                marker_enable = 1 if isinstance(entry, WaveformEntry) else 0, \
                data_cmd_sel = 1 if isinstance(entry, IdleEntry) else 0 \
            )
            table[ct,0] = control_word.packed
            table[ct,1] = self.sequence_loop_ct if ct==0 else 0
            if isinstance(entry, WaveformEntry):
                table[ct, 2] = entry.loop_ct
                table[ct, 3] = entry.segment_id
                table[ct, 5] = 0xffffffff
            elif isinstance(entry, IdleEntry):
                table[ct, 3] = entry.dac_level()
                table[ct, 4] = entry.length
            else:
                raise TypeError("Unhandled sequence entry type")

        return table
fake_data_generator.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def generate_ds2_data(max_length, str_w, nout, nbands, batch_size, num_iter):
    frame_stride = 0.01  # seconds, hard-coded value in make_aeon_dataloaders
    max_utt_len = ((int(max_length / frame_stride) - 1) // str_w) + 1
    max_lbl_len = (max_utt_len - 1) // 2

    train_set, eval_set = make_fake_dataloader(nbands, max_lbl_len, max_utt_len,
                                               nout, batch_size, num_iter)

    inputs = train_set.make_placeholders()

    if "audio_length" not in inputs:
        inputs["audio_length"] = ng.placeholder([ax.N], dtype=np.uint32)
    if "trans_length" not in inputs:
        inputs["trans_length"] = ng.placeholder([ax.N], dtype=np.uint32)

    return inputs, train_set, eval_set
redpitaya_client.py 文件源码 项目:pyrpl 作者: lneuhaus 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _reads(self, addr, length):
        if length > 65535:
            length = 65535
            self.logger.warning("Maximum read-length is %d", length)
        header = b'r' + bytes(bytearray([0,
                                         length & 0xFF, (length >> 8) & 0xFF,
                                         addr & 0xFF, (addr >> 8) & 0xFF, (addr >> 16) & 0xFF, (addr >> 24) & 0xFF]))
        self.socket.send(header)
        data = self.socket.recv(length * 4 + 8)
        while (len(data) < length * 4 + 8):
            data += self.socket.recv(length * 4 - len(data) + 8)
        if data[:8] == header:  # check for in-sync transmission
            return np.frombuffer(data[8:], dtype=np.uint32)
        else:  # error handling
            self.logger.error("Wrong control sequence from server: %s", data[:8])
            self.emptybuffer()
            return None
redpitaya_client.py 文件源码 项目:pyrpl 作者: lneuhaus 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _writes(self, addr, values):
        values = values[:65535 - 2]
        length = len(values)
        header = b'w' + bytes(bytearray([0,
                                         length & 0xFF,
                                         (length >> 8) & 0xFF,
                                         addr & 0xFF,
                                         (addr >> 8) & 0xFF,
                                         (addr >> 16) & 0xFF,
                                         (addr >> 24) & 0xFF]))
        # send header+body
        self.socket.send(header +
                         np.array(values, dtype=np.uint32).tobytes())
        if self.socket.recv(8) == header:  # check for in-sync transmission
            return True  # indicate successful write
        else:  # error handling
            self.logger.error("Error: wrong control sequence from server")
            self.emptybuffer()
            return None
seq2seq_example.py 文件源码 项目:tflearn 作者: tflearn 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def generate_trainig_data(self, num_points):
        '''
        Generate training dataset.  Produce random (integer) sequences X, and corresponding
        expected output sequences Y = generate_output_sequence(X).

        Return xy_data, y_data (both of type uint32)

        xy_data = numpy array of shape [num_points, in_seq_len + out_seq_len], with each point being X + Y
        y_data  = numpy array of shape [num_points, out_seq_len]
        '''
        x_data = np.random.randint(0, self.in_max_int, size=(num_points, self.in_seq_len))      # shape [num_points, in_seq_len]
        x_data = x_data.astype(np.uint32)                       # ensure integer type

        y_data = [ self.sequence_pattern.generate_output_sequence(x) for x in x_data ]
        y_data = np.array(y_data)

        xy_data = np.append(x_data, y_data, axis=1)     # shape [num_points, 2*seq_len]
        return xy_data, y_data
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
Evolution Strategy with Neural Nets.py 文件源码 项目:Evolutionary-Algorithm 作者: MorvanZhou 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def train(net_shapes, net_params, optimizer, utility, pool):
    # pass seed instead whole noise matrix to parallel will save your time
    noise_seed = np.random.randint(0, 2 ** 32 - 1, size=N_KID, dtype=np.uint32).repeat(2)    # mirrored sampling

    # distribute training in parallel
    jobs = [pool.apply_async(get_reward, (net_shapes, net_params, env, CONFIG['ep_max_step'], CONFIG['continuous_a'],
                                          [noise_seed[k_id], k_id], )) for k_id in range(N_KID*2)]
    rewards = np.array([j.get() for j in jobs])
    kids_rank = np.argsort(rewards)[::-1]               # rank kid id by reward

    cumulative_update = np.zeros_like(net_params)       # initialize update values
    for ui, k_id in enumerate(kids_rank):
        np.random.seed(noise_seed[k_id])                # reconstruct noise using seed
        cumulative_update += utility[ui] * sign(k_id) * np.random.randn(net_params.size)

    gradients = optimizer.get_gradients(cumulative_update/(2*N_KID*SIGMA))
    return net_params + gradients, rewards


问题


面经


文章

微信
公众号

扫码关注公众号