python类absolute()的实例源码

ShowTrace.py 文件源码 项目:GY-91_and_PiCamera_RaspberryPi 作者: mikechan0731 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def threshold_test(self):
        mx_adj, my_adj, mz_adj = self.mag_adj()
        m_normal = np.sqrt(np.square(mx_adj)+np.square(my_adj)+np.square(mz_adj))

        heading = np.degrees(np.arctan2(mx_adj/m_normal, my_adj/m_normal))

        heading_diff = np.diff(heading)

        rotate_index =  np.insert(np.where(np.absolute(heading_diff)>20.0), 0, 0)

        plt.plot(heading_diff)
        plt.show()

        angle_lst = []
        for i in range(rotate_index.size):
            try:
                angle_onestep = np.mean(heading[rotate_index[i]: rotate_index[i+1]])
                angle_lst.append(angle_onestep)
            except:
                pass

        print angle_lst
ShowTrace.py 文件源码 项目:GY-91_and_PiCamera_RaspberryPi 作者: mikechan0731 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def fft_test2(self):
        axis = str(self.axis_combobox.currentText())

        if axis.startswith('a'):
            normal_para = 16384.0
        elif axis.startswith('g'):
            normal_para = 131.0
        signal =( self.raw_data[axis] - self.bias_dict[axis])/ normal_para

        n = signal.size # Number of data points
        dx = 0.007 # Sampling period (in meters)
        Fk = np.fft.fft(signal) # Fourier coefficients (divided by n)
        nu = np.fft.fftfreq(n,dx) # Natural frequencies
        #Fk = np.fft.fftshift(Fk) # Shift zero freq to center
        #nu = np.fft.fftshift(nu) # Shift zero freq to center
        f, ax = plt.subplots(3,1,sharex=True)
        ax[0].plot(nu, np.real(Fk)) # Plot Cosine terms
        ax[0].set_ylabel(r'$Re[F_k]$', size = 'x-large')
        ax[1].plot(nu, np.imag(Fk)) # Plot Sine terms
        ax[1].set_ylabel(r'$Im[F_k]$', size = 'x-large')
        ax[2].plot(nu, np.absolute(Fk)**2) # Plot spectral power
        ax[2].set_ylabel(r'$\vert F_k \vert ^2$', size = 'x-large')
        ax[2].set_xlabel(r'$\widetilde{\nu}$', size = 'x-large')
        plt.title(axis)
        plt.show()
extract_features.py 文件源码 项目:inception-face-shape-classifier 作者: adonistio 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def q(landmarks,index1,index2):
#get angle between a i1 and i2

    x1 = landmarks[int(index1)][0]
    y1 = landmarks[int(index1)][1]
    x2 = landmarks[int(index2)][0]
    y2 = landmarks[int(index2)][1]

    x_diff = float(x1 - x2)

    if (y1 == y2): y_diff = 0.1
    if (y1 < y2): y_diff = float(np.absolute(y1 - y2))
    if (y1 > y2): 
        y_diff = 0.1
        print("Error: Facial feature located below chin.")

    return np.absolute(math.atan(x_diff/y_diff))


#image_dir should contain sub-folders containing the images where features need to be extracted
#only one face should be present in each image
#if multiple faces are detected by OpenCV, image must be manually edited; the parameters of the face-detection routine can also be changed
voice_enhancement.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        xi = self._calc_apriori_snr(gamma)
        self._prevGamma = gamma
        nu = gamma * xi / (1.0 + xi)
        self._G = (self._gamma15 * np.sqrt(nu) / gamma) * np.exp(-nu / 2.0) *\
                  ((1.0 + nu) * spc.i0(nu / 2.0) + nu * spc.i1(nu / 2.0))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
voice_enhancement.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        xi = self._calc_apriori_snr(gamma)
        # xi = self._calc_apriori_snr2(gamma,n_pow)
        self._prevGamma = gamma
        nu = gamma * xi / (1.0 + xi)
        self._G = xi / (1.0 + xi) * np.exp(0.5 * spc.exp1(nu))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
voice_enhancement.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compute_by_noise_pow(self, signal, n_pow):
        s_spec = np.fft.fftpack.fft(signal * self._window)
        s_amp = np.absolute(s_spec)
        s_phase = np.angle(s_spec)
        gamma = self._calc_aposteriori_snr(s_amp, n_pow)
        # xi = self._calc_apriori_snr2(gamma,n_pow)
        xi = self._calc_apriori_snr(gamma)
        self._prevGamma = gamma
        u = 0.5 - self._mu / (4.0 * np.sqrt(gamma * xi))
        self._G = u + np.sqrt(u ** 2.0 + self._tau / (gamma * 2.0))
        idx = np.less(s_amp ** 2.0, n_pow)
        self._G[idx] = self._constant
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = xi[idx] / (xi[idx] + 1.0)
        idx = np.isnan(self._G) + np.isinf(self._G)
        self._G[idx] = self._constant
        self._G = np.maximum(self._G, 0.0)
        amp = self._G * s_amp
        amp = np.maximum(amp, 0.0)
        amp2 = self._ratio * amp + (1.0 - self._ratio) * s_amp
        self._prevAmp = amp
        spec = amp2 * np.exp(s_phase * 1j)
        return np.real(np.fft.fftpack.ifft(spec))
helpers.py 文件源码 项目:covar_me_app 作者: CovarMe 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_mongodb_matrix(tickers, matrix_name):
    mis = MatrixItem.objects(i__in = tickers,
                             j__in = tickers,
                             matrix_name = matrix_name)
    n = len(tickers)
    available_tickers = set([mi.i for mi in mis])
    np.random.seed(n)
    a = np.absolute(np.random.normal(0, 0.001, [n, n]))
    a_triu = np.triu(a, k=0)
    a_tril = np.tril(a, k=0)
    a_diag = np.diag(np.diag(a))
    a_sym_triu = a_triu + a_triu.T - a_diag
    matrix = pd.DataFrame(a_sym_triu,
                          index = tickers,
                          columns = tickers)
    for mi in mis:
        if abs(mi.v) > 10:
            mi.v = 0.001

        matrix.set_value(mi.i, mi.j, mi.v)
        matrix.set_value(mi.j, mi.i, mi.v)

    matrix = matrix.round(6)
    return matrix
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def outlier_identification(self, model, x_train, y_train):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print('\nOutlier shapes')
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        model.fit(x_train_split, y_train_split)
        y_predicted = model.predict(x_test_split)
        residuals = np.absolute(y_predicted - y_test_split)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        outliers_mask = residuals >= rmse_pred_vs_actual
        # outliers_mask = np.insert(np.zeros((np.shape(y_train_split)[0],), dtype=np.int), np.shape(y_train_split)[0],
        #                           outliers_mask)
        outliers_mask = np.concatenate([np.zeros((np.shape(y_train_split)[0],), dtype=bool), outliers_mask])
        not_an_outlier = outliers_mask == 0
        # Resample the training set from split, since the set was randomly split
        x_out = np.insert(x_train_split, np.shape(x_train_split)[0], x_test_split, axis=0)
        y_out = np.insert(y_train_split, np.shape(y_train_split)[0], y_test_split, axis=0)
        return x_out[not_an_outlier, ], y_out[not_an_outlier, ]
perception.py 文件源码 项目:APEX 作者: ymollard 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def wait_for_human_interaction(self, arm_threshold=1, joystick_threshold=0.15):
        rospy.loginfo("We are waiting for human interaction...")

        def detect_arm_variation():
            new_effort = np.array(self.topics.torso_l_j.effort)
            delta = np.absolute(effort - new_effort)
            return np.amax(delta) > arm_threshold

        def detect_joy_variation():
            return np.amax(np.abs(self.topics.joy1.axes)) > joystick_threshold

        effort = np.array(self.topics.torso_l_j.effort)
        rate = rospy.Rate(50)
        is_joystick_demo = None
        while not rospy.is_shutdown():
            if detect_arm_variation():
                is_joystick_demo = False
                break
            elif detect_joy_variation():
                is_joystick_demo = True
                break
            rate.sleep()
        return is_joystick_demo

    ################################# Service callbacks
audio.py 文件源码 项目:zignal 作者: ronnyandersson 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def peak(self):
        """Calculate peak sample value (with sign)"""

        if len(self.samples) != 0:
            if np.issubdtype(self.samples.dtype, float):
                idx = np.absolute(self.samples).argmax(axis=0)
            else:
                # We have to be careful when checking two's complement since the absolute value
                # of the smallest possible value can't be represented without overflowing. For
                # example: signed 16bit has range [-32768, 32767] so abs(-32768) cannot be
                # represented in signed 16 bits --> use a bigger datatype
                bigger  = np.asarray(self.samples, dtype=np.int64)
                idx     = np.absolute(bigger).argmax(axis=0)

            peak = np.array([self.samples[row,col] for col, row in enumerate(idx)])
        else:
            # no samples are set but channels are configured
            idx  = np.zeros(self.ch, dtype=np.int64)
            peak = np.zeros(self.ch)
            peak[:] = float('nan')

        return peak, idx
audio.py 文件源码 项目:zignal 作者: ronnyandersson 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def normalise(self):
        """Normalise samples so that the new range is
        [-1.0,  1.0] for floats

        Converts **IN PLACE**

        TODO: verify
        [-2^n, 2^n-1] for ints
        """
        peaks, unused_idx = self.peak()
        self._logger.debug("raw peaks: %s" %peaks)

        max_abs = np.max(np.absolute(peaks))
        self._logger.debug("max_abs: %s" %max_abs)

        self.samples = self.samples/max_abs

        peaks, unused_idx = self.peak()
        self._logger.debug("new peaks: %s" %peaks)

#===================================================================================================
# Audio sub-classes
#===================================================================================================
datastft.py 文件源码 项目:jrm_ssl 作者: Fhrozen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def single_spectrogram(inseq,fs,wlen,h,imag=False):
    """
        imag: Return Imaginary Data of the STFT on True 
    """
    NFFT = int(2**(np.ceil(np.log2(wlen)))) 
    K = np.sum(hamming(wlen, False))/wlen
    raw_data = inseq.astype('float32')
    raw_data = raw_data/np.amax(np.absolute(raw_data))
    stft_data,_,_ = STFT(raw_data,wlen,h,NFFT,fs)
    s = np.absolute(stft_data)/wlen/K;
    if np.fmod(NFFT,2):
        s[1:,:] *=2
    else:
        s[1:-2] *=2        
    real_data = np.transpose(20*np.log10(s + 10**-6)).astype(np.float32)
    if imag:
        imag_data = np.angle(stft_data).astype(np.float32)
        return real_data,imag_data 
    return real_data
car_recognizer.py 文件源码 项目:Vision-based-parking-lot-availability-OpenCV 作者: Saar1312 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def getEdges(gray,detector,min_thr=None,max_thr=None):
    """
        Where detector in {1,2,3,4}
        1: Laplacian
        2: Sobelx
        3: Sobely
        4: Canny
        5: Sobelx with possitive and negative slope (in 2 negative slopes are lost) 
    """
    if min_thr is None:
        min_thr = 100
        max_thr = 200
    if detector == 1:
        return cv2.Laplacian(gray,cv2.CV_64F)
    elif detector == 2:
        return cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=-1)
    elif detector == 3:
        return cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=-1)
    elif detector == 4:
        return cv2.Canny(gray,min_thr,max_thr)  # Canny(min_thresh,max_thresh) (threshold not to the intensity but to the
                                                # intensity gradient -value that measures how different is a pixel to its neighbors-)
    elif detector == 5:
        sobelx64f = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=5)
        abs_sobel64f = np.absolute(sobelx64f)
        return np.uint8(abs_sobel64f)
yellowfin_test.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def tune_everything(x0squared, C, T, gmin, gmax):
  # First tune based on dynamic range    
  if C==0:
    dr=gmax/gmin
    mustar=((np.sqrt(dr)-1)/(np.sqrt(dr)+1))**2
    alpha_star = (1+np.sqrt(mustar))**2/gmax

    return alpha_star,mustar

  dist_to_opt = x0squared
  grad_var = C
  max_curv = gmax
  min_curv = gmin
  const_fact = dist_to_opt * min_curv**2 / 2 / grad_var
  coef = [-1, 3, -(3 + const_fact), 1]
  roots = np.roots(coef)
  roots = roots[np.real(roots) > 0]
  roots = roots[np.real(roots) < 1]
  root = roots[np.argmin(np.imag(roots) ) ]

  assert root > 0 and root < 1 and np.absolute(root.imag) < 1e-6

  dr = max_curv / min_curv
  assert max_curv >= min_curv
  mu = max( ( (np.sqrt(dr) - 1) / (np.sqrt(dr) + 1) )**2, root**2)

  lr_min = (1 - np.sqrt(mu) )**2 / min_curv
  lr_max = (1 + np.sqrt(mu) )**2 / max_curv

  alpha_star = lr_min
  mustar = mu

  return alpha_star, mustar
unet_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def world_2_voxel(world_coordinates, origin, spacing):
    stretched_voxel_coordinates = np.absolute(world_coordinates - origin)
    voxel_coordinates = stretched_voxel_coordinates / spacing
    return voxel_coordinates
test_reduce.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_non_binary_ufunc(self):
        """ Test that ireduce_ufunc raises ValueError if non-binary ufunc is used """
        with self.assertRaises(ValueError):
            ireduce_ufunc(range(10), ufunc = np.absolute)
cloudvolume.py 文件源码 项目:cloud-volume 作者: seung-lab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def slices_from_global_coords(self, slices):
    """
    Used for converting from mip 0 coordinates to upper mip level
    coordinates. This is mainly useful for debugging since the neuroglancer
    client displays the mip 0 coordinates for your cursor.
    """

    maxsize = list(self.mip_volume_size(0)) + [ self.num_channels ]
    minsize = list(self.mip_voxel_offset(0)) + [ 0 ]

    slices = generate_slices(slices, minsize, maxsize)[:3]
    lower = Vec(*map(lambda x: x.start, slices))
    upper = Vec(*map(lambda x: x.stop, slices))
    step = Vec(*map(lambda x: x.step, slices))

    lower /= self.downsample_ratio
    upper /= self.downsample_ratio

    signs = step / np.absolute(step)
    step = signs * max2(np.absolute(step / self.downsample_ratio), Vec(1,1,1))
    step = Vec(*np.round(step))

    return [
      slice(lower.x, upper.x, step.x),
      slice(lower.y, upper.y, step.y),
      slice(lower.z, upper.z, step.z)
    ]
patch_extractor.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def worldToVoxelCoord(worldCoord, origin, spacing):
  stretchedVoxelCoord = np.absolute(worldCoord - origin)
  voxelCoord = stretchedVoxelCoord / spacing
  return voxelCoord
dicom_processor.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def world_to_voxel_coord(worldCoord, origin, spacing):
    strectchedVoxelCoord = np.absolute(worldCoord - origin)
    voxelCoord = strectchedVoxelCoord / spacing

    return voxelCoord
utils_lung.py 文件源码 项目:dsb3 作者: EliasVansteenkiste 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def world2voxel(world_coord, origin, spacing):
    stretched_voxel_coord = np.absolute(world_coord - origin)
    voxel_coord = stretched_voxel_coord / spacing
    return voxel_coord


问题


面经


文章

微信
公众号

扫码关注公众号