python类amin()的实例源码

plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def view_trigger_snippets(trigger_snippets, chans, save=None):
    # Create output directory if necessary.
    if os.path.exists(save):
        for f in os.listdir(save):
            p = os.path.join(save, f)
            os.remove(p)
        os.removedirs(save)
    os.makedirs(save)
    # Plot figures.
    fig = pylab.figure()
    for (c, chan) in enumerate(chans):
        ax = fig.add_subplot(1, 1, 1)
        for n in xrange(0, trigger_snippets.shape[2]):
            y = trigger_snippets[:, c, n]
            x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
            b = 0.5 + 0.5 * numpy.random.rand()
            ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
        y = numpy.mean(trigger_snippets[:, c, :], axis=1)
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        ax.plot(x, y, color=(1.0, 0.0, 0.0), linestyle='solid')
        ax.grid(True)
        ax.set_xlim([numpy.amin(x), numpy.amax(x)])
        ax.set_title("Channel %d" %chan)
        ax.set_xlabel("time")
        ax.set_ylabel("amplitude")
        if save is not None:
            # Save plot.
            filename = "channel-%d.png" %chan
            path = os.path.join(save, filename)
            pylab.savefig(path)
        fig.clf()
    if save is None:
        pylab.show()
    else:
        pylab.close(fig)
    return
logoSet.py 文件源码 项目:vehicle_brand_classification_CNN 作者: nanoc812 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def imgSeg_logo(approx, himg, wimg):
    w = np.amax(approx[:,:,0])-np.amin(approx[:,:,0]); h = np.amax(approx[:,:,1])-np.amin(approx[:,:,1])
    if float(w)/float(h+0.001) > 4.5:
        h = int(float(w)/3.5)
    w0 = np.amin(approx[:,:,0]); h0 = np.amin(approx[:,:,1])
    h1 = h0-int(3.5*h); h2 = h0;
    w1 = max(w0+w/2-int(0.5*(h2-h1)), 0); w2 = min(w0+w/2+int(0.5*(h2-h1)), wimg-1)
    return h1, h2, w1, w2
logoSet.py 文件源码 项目:vehicle_brand_classification_CNN 作者: nanoc812 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def imgSeg_rect(approx, himg, wimg):
    w = np.amax(approx[:,:,0])-np.amin(approx[:,:,0]); h = np.amax(approx[:,:,1])-np.amin(approx[:,:,1])
    if float(w)/float(h+0.001) > 4.5:
        h = int(float(w)/3.5)
    w0 = np.amin(approx[:,:,0]); h0 = np.amin(approx[:,:,1])
    h1 = h0-int(3.6*h); h2 = min(h0+int(3*h), himg-1)
    w1 = max(w0+w/2-(h2-h1), 0); w2 = min(w0+w/2+(h2-h1), wimg-1)
    return h1, h2, w1, w2
indoor3d_util.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def collect_point_label(anno_path, out_filename, file_format='txt'):
    """ Convert original dataset files to data_label file (each line is XYZRGBL).
        We aggregated all the points from each instance in the room.

    Args:
        anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
        out_filename: path to save collected points and labels (each line is XYZRGBL)
        file_format: txt or numpy, determines what file format to save.
    Returns:
        None
    Note:
        the points are shifted before save, the most negative point is now at origin.
    """
    points_list = []

    for f in glob.glob(os.path.join(anno_path, '*.txt')):
        cls = os.path.basename(f).split('_')[0]
        if cls not in g_classes: # note: in some room there is 'staris' class..
            cls = 'clutter'
        points = np.loadtxt(f)
        labels = np.ones((points.shape[0],1)) * g_class2label[cls]
        points_list.append(np.concatenate([points, labels], 1)) # Nx7

    data_label = np.concatenate(points_list, 0)
    xyz_min = np.amin(data_label, axis=0)[0:3]
    data_label[:, 0:3] -= xyz_min

    if file_format=='txt':
        fout = open(out_filename, 'w')
        for i in range(data_label.shape[0]):
            fout.write('%f %f %f %d %d %d %d\n' % \
                          (data_label[i,0], data_label[i,1], data_label[i,2],
                           data_label[i,3], data_label[i,4], data_label[i,5],
                           data_label[i,6]))
        fout.close()
    elif file_format=='numpy':
        np.save(out_filename, data_label)
    else:
        print('ERROR!! Unknown file format: %s, please use txt or numpy.' % \
            (file_format))
        exit()
indoor3d_util.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def collect_bounding_box(anno_path, out_filename):
    """ Compute bounding boxes from each instance in original dataset files on
        one room. **We assume the bbox is aligned with XYZ coordinate.**

    Args:
        anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
        out_filename: path to save instance bounding boxes for that room.
            each line is x1 y1 z1 x2 y2 z2 label,
            where (x1,y1,z1) is the point on the diagonal closer to origin
    Returns:
        None
    Note:
        room points are shifted, the most negative point is now at origin.
    """
    bbox_label_list = []

    for f in glob.glob(os.path.join(anno_path, '*.txt')):
        cls = os.path.basename(f).split('_')[0]
        if cls not in g_classes: # note: in some room there is 'staris' class..
            cls = 'clutter'
        points = np.loadtxt(f)
        label = g_class2label[cls]
        # Compute tightest axis aligned bounding box
        xyz_min = np.amin(points[:, 0:3], axis=0)
        xyz_max = np.amax(points[:, 0:3], axis=0)
        ins_bbox_label = np.expand_dims(
            np.concatenate([xyz_min, xyz_max, np.array([label])], 0), 0)
        bbox_label_list.append(ins_bbox_label)

    bbox_label = np.concatenate(bbox_label_list, 0)
    room_xyz_min = np.amin(bbox_label[:, 0:3], axis=0)
    bbox_label[:, 0:3] -= room_xyz_min 
    bbox_label[:, 3:6] -= room_xyz_min 

    fout = open(out_filename, 'w')
    for i in range(bbox_label.shape[0]):
        fout.write('%f %f %f %f %f %f %d\n' % \
                      (bbox_label[i,0], bbox_label[i,1], bbox_label[i,2],
                       bbox_label[i,3], bbox_label[i,4], bbox_label[i,5],
                       bbox_label[i,6]))
    fout.close()
utils.py 文件源码 项目:aapm_thoracic_challenge 作者: xf4j 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read_testing_inputs(file, roi, im_size, output_path=None):
    f_h5 = h5py.File(file, 'r')
    if roi == -1:
        images = np.asarray(f_h5['resized_images'], dtype=np.float32)
        read_info = {}
        read_info['shape'] = np.asarray(f_h5['images'], dtype=np.float32).shape
    else:
        images = np.asarray(f_h5['images'], dtype=np.float32)
        output = h5py.File(os.path.join(output_path, 'All_' + os.path.basename(file)), 'r')
        predictions = np.asarray(output['predictions'], dtype=np.float32)
        output.close()
        # Select the roi
        roi_labels = (predictions == roi + 1).astype(np.float32)
        nz = np.nonzero(roi_labels)
        extract = []
        for c in range(3):
            start = np.amin(nz[c])
            end = np.amax(nz[c])
            r = end - start
            extract.append((np.maximum(int(np.rint(start - r * 0.1)), 0),
                            np.minimum(int(np.rint(end + r * 0.1)), images.shape[c])))

        extract_images = images[extract[0][0] : extract[0][1], extract[1][0] : extract[1][1], extract[2][0] : extract[2][1]]
        read_info = {}
        read_info['shape'] = images.shape
        read_info['extract_shape'] = extract_images.shape
        read_info['extract'] = extract

        images = resize(extract_images, im_size, mode='constant')

    f_h5.close()
    return images, read_info
image.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def normalize(im):
  mini = np.amin(im)
  maxi = np.amax(im)
  rng = maxi-mini
  im -= mini
  if rng > 0:
    im /= rng
  return im


# ----- Type transformations --------------------------------------------------
image_gen.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def to_rgb(img):
    img = img.reshape(img.shape[0], img.shape[1])
    img[np.isnan(img)] = 0
    img -= np.amin(img)
    img /= np.amax(img)
    blue = np.clip(4*(0.75-img), 0, 1)
    red  = np.clip(4*(img-0.25), 0, 1)
    green= np.clip(44*np.fabs(img-0.5)-1., 0, 1)
    rgb = np.stack((red, green, blue), axis=2)
    return rgb
image_util.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _process_data(self, data):
        # normalization
        data = np.clip(np.fabs(data), self.a_min, self.a_max)
        data -= np.amin(data)
        data /= np.amax(data)
        return data
util.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_prediction(x_test, y_test, prediction, save=False):
    import matplotlib
    import matplotlib.pyplot as plt

    test_size = x_test.shape[0]
    fig, ax = plt.subplots(test_size, 3, figsize=(12,12), sharey=True, sharex=True)

    x_test = crop_to_shape(x_test, prediction.shape)
    y_test = crop_to_shape(y_test, prediction.shape)

    ax = np.atleast_2d(ax)
    for i in range(test_size):
        cax = ax[i, 0].imshow(x_test[i])
        plt.colorbar(cax, ax=ax[i,0])
        cax = ax[i, 1].imshow(y_test[i, ..., 1])
        plt.colorbar(cax, ax=ax[i,1])
        pred = prediction[i, ..., 1]
        pred -= np.amin(pred)
        pred /= np.amax(pred)
        cax = ax[i, 2].imshow(pred)
        plt.colorbar(cax, ax=ax[i,2])
        if i==0:
            ax[i, 0].set_title("x")
            ax[i, 1].set_title("y")
            ax[i, 2].set_title("pred")
    fig.tight_layout()

    if save:
        fig.savefig(save)
    else:
        fig.show()
        plt.show()
CpuUsage.py 文件源码 项目:supremm 作者: ubccr 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def computeallcpus(self):
        """ overall stats for all cores on the nodes """

        ratios = numpy.empty((self._ncpumetrics, self._totalcores), numpy.double)

        coreindex = 0
        for host, last in self._last.iteritems():
            try:
                elapsed = last - self._first[host]

                if numpy.amin(numpy.sum(elapsed, 0)) < 1.0:
                    # typically happens if the job was very short and the datapoints are too close together
                    return {"error": ProcessingError.JOB_TOO_SHORT}

                coresperhost = len(last[0, :])
                ratios[:, coreindex:(coreindex+coresperhost)] = 1.0 * elapsed / numpy.sum(elapsed, 0)
                coreindex += coresperhost
            except ValueError:
                # typically happens if the linux pmda crashes during the job
                return {"error": ProcessingError.INSUFFICIENT_DATA}

        results = {}
        for i, name in enumerate(self._outnames):
            results[name] = calculate_stats(ratios[i, :])

        results['all'] = {"cnt": self._totalcores}

        return results
utils_plots.py 文件源码 项目:dsb3 作者: EliasVansteenkiste 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def plot_slice_3d_2_patch(ct_scan, mask, pid, img_dir=None, idx=None):
    # to convert cuda arrays to numpy array
    ct_scan = np.asarray(ct_scan)
    mask = np.asarray(mask)

    fig, ax = plt.subplots(2, 3, figsize=[8, 8])
    fig.canvas.set_window_title(pid)

    if idx == None:
        #just plot in the middle of the cube
        in_sh = ct_scan.shape
        idx = [in_sh[0]/2,in_sh[1]/2,in_sh[2]/2]
    print np.amin(ct_scan), np.amax(ct_scan)
    print np.amin(mask), np.amax(mask)


    ax[0, 0].imshow(ct_scan[idx[0], :, :], cmap=plt.cm.gray)
    ax[0, 1].imshow(ct_scan[:, idx[1], :], cmap=plt.cm.gray)
    ax[0, 2].imshow(ct_scan[:, :, idx[2]], cmap=plt.cm.gray)

    ax[1, 0].imshow(mask[idx[0], :, :], cmap=plt.cm.gray)
    ax[1, 1].imshow(mask[:, idx[1], :], cmap=plt.cm.gray)
    ax[1, 2].imshow(mask[:, :, idx[2]], cmap=plt.cm.gray)

    if img_dir is not None:
        fig.savefig(img_dir + '/%s.png' % pid, bbox_inches='tight')
    else:
        plt.show()
    fig.clf()
    plt.close('all')
snpmatch.py 文件源码 项目:SNPmatch 作者: Gregor-Mendel-Institute 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def calculate_likelihoods(ScoreList, NumInfoSites):
  num_lines = len(ScoreList)
  LikeLiHoods = [likeliTest(NumInfoSites[i], int(ScoreList[i])) for i in range(num_lines)]
  LikeLiHoods = np.array(LikeLiHoods).astype("float")
  TopHit = np.amin(LikeLiHoods)
  LikeLiHoodRatios = [LikeLiHoods[i]/TopHit for i in range(num_lines)]
  LikeLiHoodRatios = np.array(LikeLiHoodRatios).astype("float")
  return (LikeLiHoods, LikeLiHoodRatios)
dataset.py 文件源码 项目:untwist 作者: IoSR-Surrey 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def normalize(self):
        self.X = (self.X - np.amin(self.X, 0)) \
        / (np.amax(self.X, 0) - np.amin(self.X, 0))
dataset.py 文件源码 项目:untwist 作者: IoSR-Surrey 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def normalize_points(self, x):
        return np.divide(x - np.amin(self.X, 0) ,
            np.amax(self.X, 0) - np.amin(self.X, 0), np.empty_like(x))
transfer_learning.py 文件源码 项目:ModelZoo 作者: NervanaSystems 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def compute_patches_at_scale(self, scale_idx, scale, p_id_base):
        debug("Processing {} scale_idx:{} scale:{}".format(self.file_name, scale_idx, scale))
        shape = np.array(self.shape)
        size = (np.amin(shape)-1) / scale
        num_samples = np.ceil( (shape-1) / size)
        num_samples = [int(n*2) if n > 1 else int(n) for n in num_samples]
        patches = []
        sample_locs = [ self.sample_locs_for_dim( self.shape[0], size, num_samples[0]),
                        self.sample_locs_for_dim( self.shape[1], size, num_samples[1])]
        p_id = p_id_base
        for sample_loc_0 in sample_locs[0]:
            for sample_loc_1 in sample_locs[1]:
                patch = ImagePatch( p_id, self, (sample_loc_0, sample_loc_1), size, scale)
                patch.label, patch.matched_roi_idx = \
                            self.get_label_for_patch(patch)
                if patch.label != PASCAL_VOC_BACKGROUND_CLASS:
                    self.non_background_patches.append(patch)
                else:
                    self.background_patches.append(patch)

                patches.append(patch)
                p_id += 1

        debug("Compute {} patches".format(p_id-p_id_base))

        return p_id

# Sample the Pascal VOC dataset
renderer.py 文件源码 项目:hienoi 作者: christophercrouzet 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def lower_bounds(self):
        return Vector2f(*numpy.amin(self.particles['position'], axis=0))
test_multiarray.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_all(self):
        a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
        for i in range(a.ndim):
            amin = a.min(i)
            aargmin = a.argmin(i)
            axes = list(range(a.ndim))
            axes.remove(i)
            assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes))))
test_multiarray.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_scalar(self):
        assert_raises(ValueError, np.amax, 1, 1)
        assert_raises(ValueError, np.amin, 1, 1)

        assert_equal(np.amax(1, axis=0), 1)
        assert_equal(np.amin(1, axis=0), 1)
        assert_equal(np.amax(1, axis=None), 1)
        assert_equal(np.amin(1, axis=None), 1)


问题


面经


文章

微信
公众号

扫码关注公众号