python类logical_not()的实例源码

loader.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
train_ddqn.py 文件源码 项目:strategy 作者: kanghua309 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def replay(self):
        """Memory Management and training of the agent
        """
        if len(self.memory) < self.batch_size:
            return

        state, action, reward, next_state, done = self._get_batches()
        reward += (self.gamma
                   * np.logical_not(done)
                   * np.amax(self.model.predict(next_state), axis=1))
        q_target = self.target_model.predict(state)

        _ = pd.Series(action)
        one_hot = pd.get_dummies(_).as_matrix()
        action_batch = np.where(one_hot == 1)
        q_target[action_batch] = reward
        return self.model.fit(state, q_target,
                              batch_size=self.batch_size,
                              epochs=1,
                              verbose=False)
layer.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
loader.py 文件源码 项目:Deep-Feature-Flow 作者: msracver 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:Deep-Feature-Flow 作者: msracver 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
test_ufunc.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_object_logical(self):
        a = np.array([3, None, True, False, "test", ""], dtype=object)
        assert_equal(np.logical_or(a, None),
                        np.array([x or None for x in a], dtype=object))
        assert_equal(np.logical_or(a, True),
                        np.array([x or True for x in a], dtype=object))
        assert_equal(np.logical_or(a, 12),
                        np.array([x or 12 for x in a], dtype=object))
        assert_equal(np.logical_or(a, "blah"),
                        np.array([x or "blah" for x in a], dtype=object))

        assert_equal(np.logical_and(a, None),
                        np.array([x and None for x in a], dtype=object))
        assert_equal(np.logical_and(a, True),
                        np.array([x and True for x in a], dtype=object))
        assert_equal(np.logical_and(a, 12),
                        np.array([x and 12 for x in a], dtype=object))
        assert_equal(np.logical_and(a, "blah"),
                        np.array([x and "blah" for x in a], dtype=object))

        assert_equal(np.logical_not(a),
                        np.array([not x for x in a], dtype=object))

        assert_equal(np.logical_or.reduce(a), 3)
        assert_equal(np.logical_and.reduce(a), None)
test_extras.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test cov on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)
        valid = np.logical_not(getmaskarray(x)).astype(int)
        frac = np.dot(valid, valid.T)
        xf = (x - x.mean(1)[:, None]).filled(0)
        assert_almost_equal(cov(x),
                            np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
        assert_almost_equal(cov(x, bias=True),
                            np.cov(xf, bias=True) * x.shape[1] / frac)
        frac = np.dot(valid.T, valid)
        xf = (x - x.mean(0)).filled(0)
        assert_almost_equal(cov(x, rowvar=False),
                            (np.cov(xf, rowvar=False) *
                             (x.shape[0] - 1) / (frac - 1.)))
        assert_almost_equal(cov(x, rowvar=False, bias=True),
                            (np.cov(xf, rowvar=False, bias=True) *
                             x.shape[0] / frac))
core.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self
geometry.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def to_mask(self, x_size, y_size):

        """
        This function ...
        :param x_size:
        :param y_size:
        :return:
        """

        base = self.base.to_mask(x_size, y_size)
        exclude = self.exclude.to_mask(x_size, y_size)

        # Return the mask
        return base * np.logical_not(exclude)

    # -----------------------------------------------------------------
masks.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def masked_outside(region, header, x_size, y_size, expand_factor=1.0):

    """
    This function ...
    :param region:
    :param header:
    :param x_size:
    :param y_size:
    :param expand_factor:
    :return:
    """

    # Create a new region ...
    region = regions.expand(region, factor=expand_factor)

    # Create a mask from the region
    mask = np.logical_not(regions.create_mask(region, header, x_size, y_size))

    # Return the mask
    return mask

# -----------------------------------------------------------------
geometry.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def to_mask(self, x_size, y_size):

        """
        This function ...
        :param x_size:
        :param y_size:
        :return:
        """

        base = self.base.to_mask(x_size, y_size)
        exclude = self.exclude.to_mask(x_size, y_size)

        # Return the mask
        return base * np.logical_not(exclude)

    # -----------------------------------------------------------------
masks.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def masked_outside(region, header, x_size, y_size, expand_factor=1.0):

    """
    This function ...
    :param region:
    :param header:
    :param x_size:
    :param y_size:
    :param expand_factor:
    :return:
    """

    # Create a new region ...
    region = regions.expand(region, factor=expand_factor)

    # Create a mask from the region
    mask = np.logical_not(regions.create_mask(region, header, x_size, y_size))

    # Return the mask
    return mask

# -----------------------------------------------------------------
functions.py 文件源码 项目:Tethys 作者: JosePedroMatos 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def predictiveQQ(simulations, targets, bands):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
    bands = toCustomLogSpace(np.array(bands)[::-1])
    pValues = np.empty_like(targets)
    for i0 in range(pValues.shape[0]):
        sims, idxs = np.unique(simulations[i0,:],return_index=True)
        try:
            pValues[i0] = interp1d(sims, bands[idxs], kind='linear', assume_sorted=True)(targets[i0])
        except np.linalg.linalg.LinAlgError as ex:
            pValues[i0] = np.nan
        except ValueError as ex:
            # TODO: handle better extrapolations
            if targets[i0]<sims[0]:
                pValues[i0] = bands[0]+(bands[0]-bands[1])/(sims[0]-sims[1])*(targets[i0]-sims[0])
            else:
                pValues[i0] = bands[-1]+(bands[-1]-bands[-2])/(sims[-1]-sims[-2])*(targets[i0]-sims[-1])
    pValues = fromCustomLogSpace(pValues)
    pValues[pValues<0] = 0
    pValues[pValues>1] = 1

    pValues = np.sort(1-pValues[np.logical_not(np.isnan(pValues))])
    return (np.linspace(0,1, pValues.shape[0]), pValues)
visualize.py 文件源码 项目:3D-IWGAN 作者: EdwardSmith1884 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def old_viz(): 

    objects = np.load(sys.argv[1])
    if len(objects.shape)==3: 
        objects = [objects]
    for voxels in objects:
        print voxels.shape

        if connect > 0: 
            voxels_keep = (voxels >= threshold)
            voxels_keep = max_connected(voxels_keep, connect)
            voxels[np.logical_not(voxels_keep)] = 0
        if downsample_factor > 1:
            print "==> Performing downsample: factor: "+str(downsample_factor)+" method: "+downsample_method,
            voxels = downsample(voxels, downsample_factor, method=downsample_method)
        print "Done"
        visualization(voxels, threshold, title=str(ind+1), uniform_size=uniform_size, use_colormap=use_colormap)
calc_util.py 文件源码 项目:cellstar 作者: Fafa87 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def unstick_contour(edgepoints, unstick_coeff):
    """
    Removes edgepoints near previously discarded points.
    @type edgepoints: list[bool]
    @param edgepoints: current edgepoint list
    @type unstick_coeff: float
    @param unstick_coeff
    @return: filtered edgepoints
    """
    (n, init, end) = loop_connected_components(np.logical_not(edgepoints))
    filtered = np.copy(edgepoints)
    n_edgepoint = len(edgepoints)
    for size, s, e in zip(n, init, end):
        for j in range(1, int(size * unstick_coeff + 0.5) + 1):
            filtered[(e + j) % n_edgepoint] = 0
            filtered[(s - j) % n_edgepoint] = 0
    return filtered
utils.py 文件源码 项目:mriqc 作者: poldracklab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _get_limits(nifti_file, only_plot_noise=False):
    from builtins import bytes, str   # pylint: disable=W0622

    if isinstance(nifti_file, (str, bytes)):
        nii = nb.as_closest_canonical(nb.load(nifti_file))
        data = nii.get_data()
    else:
        data = nifti_file

    data_mask = np.logical_not(np.isnan(data))

    if only_plot_noise:
        data_mask = np.logical_and(data_mask, data != 0)
        vmin = np.percentile(data[data_mask], 0)
        vmax = np.percentile(data[data_mask], 61)
    else:
        vmin = np.percentile(data[data_mask], 0.5)
        vmax = np.percentile(data[data_mask], 99.5)

    return vmin, vmax
generator_test.py 文件源码 项目:DeepPoseComparison 作者: ynaka81 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def setUp(self, m, m_lsp, m_lspet):
        # prepare mock.
        joints = np.array([[[50, 80, 0], [50, 80, 1], [150, 260, 1], [150, 260, 0]],
                           [[100, 200, 1], [100, 200, 0], [120, 280, 0], [120, 280, 1]],
                           [[40, 10, 0], [40, 10, 1], [120, 290, 1], [120, 290, 0]]])
        m_lsp_instance = m_lsp.return_value
        m_lsp_instance.name = 'lsp_dataset'
        m_lsp_instance.__len__.return_value = 2
        lsp_joints = joints.copy()
        lsp_joints[:, :, 2] = np.logical_not(joints[:, :, 2]).astype(int)
        m_lsp_instance.get_data = lambda i: ('train', lsp_joints[i], 'im{0:04d}.jpg'.format(i + 1), np.zeros((300, 200, 3)))
        m_lspet_instance = m_lspet.return_value
        m_lspet_instance.name = 'lspet_dataset'
        m_lspet_instance.__len__.return_value = 2
        lspet_joints = joints.copy()
        m_lspet_instance.get_data = lambda i: ('train', lspet_joints[i], 'im{0:05d}.jpg'.format(i + 1), np.zeros((300, 200, 3)))
        # initialize.
        self.path = 'test_orig_data'
        self.output = 'test_data'
        self.generator = DatasetGenerator(path=self.path, output=self.output)
unb.py 文件源码 项目:Bayes 作者: krzjoa 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def _features_in_class(self, X, y_one_hot):
        '''

        Compute complement features counts

        Parameters
        ----------
        X: numpy array (n_samples, n_features)
            Matrix of input samples
        y_one_hot: numpy array (n_samples, n_classes)
            Binary matrix encoding input
        '''
        if not self.is_fitted:
            self.complement_features_ = X.T.dot(np.logical_not(y_one_hot))
            self.features_ = X.T.dot(y_one_hot)
        else:
            self.complement_features_ += X.T.dot(np.logical_not(y_one_hot))
            self.features_ += X.T.dot(y_one_hot)
lwnb.py 文件源码 项目:Bayes 作者: krzjoa 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def _features_in_class(self, X, y_one_hot):
        '''

        Compute complement features counts

        Parameters
        ----------
        X: numpy array (n_samples, n_features)
            Matrix of input samples
        y_one_hot: numpy array (n_samples, n_classes)
            Binary matrix encoding input
        '''
        if not self.is_fitted:
            self.complement_features = X.T.dot(np.logical_not(y_one_hot))
        else:
            self.complement_features += X.T.dot(np.logical_not(y_one_hot))


问题


面经


文章

微信
公众号

扫码关注公众号