python类logical_not()的实例源码

hdf5.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def reg2bin_vector(begin, end):
    '''Vectorized tabix reg2bin -- much faster than reg2bin'''
    result = np.zeros(begin.shape)

    # Entries filled
    done = np.zeros(begin.shape, dtype=np.bool)

    for (bits, bins) in rev_bit_bins:
        begin_shift = begin >> bits
        new_done = (begin >> bits) == (end >> bits)
        mask = np.logical_and(new_done, np.logical_not(done))
        offset = ((1 << (29 - bits)) - 1) / 7
        result[mask] = offset + begin_shift[mask]

        done = new_done

    return result.astype(np.int32)
discrete_action_conv_trainer.py 文件源码 项目:BlueWhale 作者: caffe2 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def get_max_q_values(
        self,
        next_states: np.ndarray,
        possible_next_actions: Optional[np.ndarray] = None,
        use_target_network: Optional[bool] = True
    ) -> np.ndarray:
        q_values = self.get_q_values_all_actions(
            next_states, use_target_network
        )

        if possible_next_actions is not None:
            mask = np.multiply(
                np.logical_not(possible_next_actions),
                self.ACTION_NOT_POSSIBLE_VAL
            )
            q_values += mask

        return np.max(q_values, axis=1, keepdims=True)
open_ai_gym_environment.py 文件源码 项目:BlueWhale 作者: caffe2 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def get_training_data_page(self, num_samples):
        """
        Returns a TrainingDataPage with shuffled, transformed transitions from
        replay memory.

        :param num_samples: Number of transitions to sample from replay memory.
        """
        states, actions, rewards, next_states, next_actions, terminals,\
            possible_next_actions = self.sample_memories(num_samples)
        return TrainingDataPage(
            np.array(states, dtype=np.float32),
            np.array(actions, dtype=np.float32),
            np.array(rewards, dtype=np.float32),
            np.array(next_states, dtype=np.float32),
            np.array(next_actions, dtype=np.float32),
            np.array(possible_next_actions, dtype=np.float32),
            None, None, np.logical_not(terminals, dtype=np.bool)
        )
utils.py 文件源码 项目:seqhawkes 作者: mlukasik 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def foldsplitter(taskcolumn, train_set_sizes):
    '''
    For each task id (in passed taskcolumn) take rows from number 
    train_set_sizes up for testing, 
    and all other rows for training (so training consists of both other 
    task ids and of rows from the same task id
    up to number train_set_sizes-1.
    '''

    folds = sorted(list(set(taskcolumn)))
    for fold in folds:
        for train_set_size in train_set_sizes:
            testfold2train = taskcolumn == fold
            cnt = 0
            for (i, x) in enumerate(testfold2train):
                if testfold2train[i]:
                    cnt += 1
                    if cnt > train_set_size:
                        testfold2train[i] = False
            remaining_train = taskcolumn != fold
            x = np.logical_or.reduce([testfold2train, remaining_train])

            yield (x, np.logical_not(x))
utils.py 文件源码 项目:seqhawkes 作者: mlukasik 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def CVsplitter(taskcolumn, K):
    '''
    Divide tasks into roughly equal K sets, and do CV over such K sets.
    '''

    tasks = sorted(list(set(taskcolumn)))
    tasks_splitted = [[] for _ in range(K)]
    for (ind, task) in enumerate(tasks):
        tasks_splitted[ind % K].append(task)

    for fold in range(K):
        print 'fold:', fold, 'testtasks:', tasks_splitted[fold]
        test = np.logical_or.reduce([taskcolumn == taskid for taskid in
                                    tasks_splitted[fold]])

        yield (np.logical_not(test), test)
utils.py 文件源码 项目:sand-glyphs 作者: inconvergent 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def random_points_in_circle(n,xx,yy,rr):
  """
  get n random points in a circle.
  """

  rnd = random(size=(n,3))
  t = TWOPI*rnd[:,0]
  u = rnd[:,1:].sum(axis=1)
  r = zeros(n,'float')
  mask = u>1.
  xmask = logical_not(mask)
  r[mask] = 2.-u[mask]
  r[xmask] = u[xmask]
  xyp = reshape(rr*r,(n,1))*column_stack( (cos(t),sin(t)) )
  dartsxy  = xyp + array([xx,yy])
  return dartsxy
loader.py 文件源码 项目:mx-rfcn 作者: giorking 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if config.TRAIN.ASPECT_GROUPING:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                if inds.shape[0] % 2:
                    inds_ = np.reshape(inds[:-1], (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                    inds[:-1] = np.reshape(inds_[row_perm, :], (-1, ))
                else:
                    inds = np.reshape(inds, (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds.shape[0]))
                    inds = np.reshape(inds[row_perm, :], (-1, ))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:mx-rfcn 作者: giorking 项目源码 文件源码 阅读 65 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if config.TRAIN.ASPECT_GROUPING:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                if inds.shape[0] % 2:
                    inds_ = np.reshape(inds[:-1], (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                    inds[:-1] = np.reshape(inds_[row_perm, :], (-1, ))
                else:
                    inds = np.reshape(inds, (-1, 2))
                    row_perm = np.random.permutation(np.arange(inds.shape[0]))
                    inds = np.reshape(inds[row_perm, :], (-1, ))
                self.index = inds
            else:
                np.random.shuffle(self.index)
layer.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
layer.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
layers.py 文件源码 项目:fold 作者: tensorflow 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _create_drop_path_choices(self):
    if not self._drop_path:  # Drop path was turned off.
      return np.zeros(shape=[len(self._choices)], dtype='int32')
    elif np.random.uniform() < self._p_local_drop_path:
      # Local drop-path (make each choice independantly at random.)
      choices = np.random.uniform(size=[len(self._choices)])
      drop_base = choices < self._p_drop_base_case
      drop_recursive = np.logical_and(
          choices < (self._p_drop_base_case + self._p_drop_recursive_case),
          np.logical_not(drop_base))
      return (np.int32(drop_base)*self._JUST_RECURSE +
              np.int32(drop_recursive)*self._JUST_BASE)
    else:
      # Global (pick a single column.)
      column = np.random.randint(self._fractal_block_depth)
      return np.array(
          [self._JUST_RECURSE if len(binary_seq) < column else self._JUST_BASE
           for _, binary_seq in self._choices],
          dtype='int32')
random.py 文件源码 项目:iutils 作者: inconvergent 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def random_points_in_circle(n,xx,yy,rr):
  """
  get n random points in a circle.
  """


  rnd = random(size=(n,3))
  t = 2.*PI*rnd[:,0]
  u = rnd[:,1:].sum(axis=1)
  r = zeros(n,'float')
  mask = u>1.
  xmask = logical_not(mask)
  r[mask] = 2.-u[mask]
  r[xmask] = u[xmask]
  xyp = reshape(rr*r,(n,1))*column_stack( (cos(t),sin(t)) )
  dartsxy  = xyp + array([xx,yy])
  return dartsxy
test_ufunc.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def test_object_logical(self):
        a = np.array([3, None, True, False, "test", ""], dtype=object)
        assert_equal(np.logical_or(a, None),
                        np.array([x or None for x in a], dtype=object))
        assert_equal(np.logical_or(a, True),
                        np.array([x or True for x in a], dtype=object))
        assert_equal(np.logical_or(a, 12),
                        np.array([x or 12 for x in a], dtype=object))
        assert_equal(np.logical_or(a, "blah"),
                        np.array([x or "blah" for x in a], dtype=object))

        assert_equal(np.logical_and(a, None),
                        np.array([x and None for x in a], dtype=object))
        assert_equal(np.logical_and(a, True),
                        np.array([x and True for x in a], dtype=object))
        assert_equal(np.logical_and(a, 12),
                        np.array([x and 12 for x in a], dtype=object))
        assert_equal(np.logical_and(a, "blah"),
                        np.array([x and "blah" for x in a], dtype=object))

        assert_equal(np.logical_not(a),
                        np.array([not x for x in a], dtype=object))

        assert_equal(np.logical_or.reduce(a), 3)
        assert_equal(np.logical_and.reduce(a), None)
test_extras.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_2d_w_missing(self):
        # Test cov on 2D variable w/ missing value
        x = self.data
        x[-1] = masked
        x = x.reshape(3, 4)
        valid = np.logical_not(getmaskarray(x)).astype(int)
        frac = np.dot(valid, valid.T)
        xf = (x - x.mean(1)[:, None]).filled(0)
        assert_almost_equal(cov(x),
                            np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
        assert_almost_equal(cov(x, bias=True),
                            np.cov(xf, bias=True) * x.shape[1] / frac)
        frac = np.dot(valid.T, valid)
        xf = (x - x.mean(0)).filled(0)
        assert_almost_equal(cov(x, rowvar=False),
                            (np.cov(xf, rowvar=False) *
                             (x.shape[0] - 1) / (frac - 1.)))
        assert_almost_equal(cov(x, rowvar=False, bias=True),
                            (np.cov(xf, rowvar=False, bias=True) *
                             x.shape[0] / frac))
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 53 收藏 0 点赞 0 评论 0
def __ipow__(self, other):
        """
        Raise self to the power other, in place.

        """
        other_data = getdata(other)
        other_mask = getmask(other)
        with np.errstate(divide='ignore', invalid='ignore'):
            self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
                                         other_data))
        invalid = np.logical_not(np.isfinite(self._data))
        if invalid.any():
            if self._mask is not nomask:
                self._mask |= invalid
            else:
                self._mask = invalid
            np.copyto(self._data, self.fill_value, where=invalid)
        new_mask = mask_or(other_mask, invalid)
        self._mask = mask_or(self._mask, new_mask)
        return self
knn_missing_data.py 文件源码 项目:Generative-ConvACs 作者: HUJI-Deep 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def knn_masked_data(trX,trY,missing_data_dir, input_shape, k):

    raw_im_data = np.loadtxt(join(script_dir,missing_data_dir,'index.txt'),delimiter=' ',dtype=str)
    raw_mask_data = np.loadtxt(join(script_dir,missing_data_dir,'index_mask.txt'),delimiter=' ',dtype=str)
    # Using 'brute' method since we only want to do one query per classifier
    # so this will be quicker as it avoids overhead of creating a search tree
    knn_m = KNeighborsClassifier(algorithm='brute',n_neighbors=k)
    prob_Y_hat = np.zeros((raw_im_data.shape[0],int(np.max(trY)+1)))
    total_images = raw_im_data.shape[0]
    pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start()
    for i in range(total_images):
        mask_im=load_image(join(script_dir,missing_data_dir,raw_mask_data[i][0]), input_shape,1).reshape(np.prod(input_shape))
        mask = np.logical_not(mask_im > eps) # since mask is 1 at missing locations
        v_im=load_image(join(script_dir,missing_data_dir,raw_im_data[i][0]), input_shape, 255).reshape(np.prod(input_shape))
        rep_mask = np.tile(mask,(trX.shape[0],1))
        # Corrupt whole training set according to the current mask
        corr_trX = np.multiply(trX, rep_mask)        
        knn_m.fit(corr_trX, trY)
        prob_Y_hat[i,:] = knn_m.predict_proba(v_im.reshape(1,-1))
        pbar.update(i)
    pbar.finish()
    return prob_Y_hat
layer.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
TractableBufferStockModel.py 文件源码 项目:HARK 作者: econ-ark 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def getControls(self):
        '''
        Calculate consumption for each agent this period.

        Parameters
        ----------
        None

        Returns
        -------
        None
        '''
        employed = self.eStateNow == 1.0
        unemployed = np.logical_not(employed)
        cLvlNow = np.zeros(self.AgentCount)
        cLvlNow[employed] = self.solution[0].cFunc(self.mLvlNow[employed])
        cLvlNow[unemployed] = self.solution[0].cFunc_U(self.mLvlNow[unemployed])
        self.cLvlNow = cLvlNow
brsa.py 文件源码 项目:brainiak 作者: brainiak 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def _zscore(a):
    """ Calculating z-score of data on the first axis.
        If the numbers in any column are all equal, scipy.stats.zscore
        will return NaN for this column. We shall correct them all to
        be zeros.

    Parameters
    ----------
    a: numpy array

    Returns
    -------
    zscore: numpy array
        The z-scores of input "a", with any columns including non-finite
        numbers replaced by all zeros.
    """
    assert a.ndim > 1, 'a must have more than one dimensions'
    zscore = scipy.stats.zscore(a, axis=0)
    zscore[:, np.logical_not(np.all(np.isfinite(zscore), axis=0))] = 0
    return zscore
independent_sphere.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 58 收藏 0 点赞 0 评论 0
def ft_autocorrelation_function(self, k):
        """Compute the 3D Fourier transform of the isotropic correlation
        function for an independent sphere for given magnitude k of the 3D wave vector
        (float).

        """

        X = self.radius * np.asarray(k)
        volume_sphere = 4.0 / 3 * np.pi * self.radius**3

        bessel_term = np.empty_like(X)
        zero_X = np.isclose(X, 0)
        non_zero_X = np.logical_not(zero_X)
        X_non_zero = X[non_zero_X]

        bessel_term[non_zero_X] = (9 * ((np.sin(X_non_zero) - X_non_zero * np.cos(X_non_zero))
                                        / X_non_zero**3)**2)
        bessel_term[zero_X] = 1.0
        return self.corr_func_at_origin * volume_sphere * bessel_term
loader.py 文件源码 项目:focal-loss 作者: unsky 项目源码 文件源码 阅读 58 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:focal-loss 作者: unsky 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:odnl 作者: lilhope 项目源码 文件源码 阅读 55 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:odnl 作者: lilhope 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            #no needed
            """if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:"""
            np.random.shuffle(self.index)
preprocessing.py 文件源码 项目:pycolor_detection 作者: parth1993 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def findSignificantContours(img, sobel_8u, sobel):
    image, contours, heirarchy = cv2.findContours(sobel_8u, \
                                                  cv2.RETR_EXTERNAL, \
                                                  cv2.CHAIN_APPROX_SIMPLE)
    mask = np.ones(image.shape[:2], dtype="uint8") * 255

    level1 = []
    for i, tupl in enumerate(heirarchy[0]):

        if tupl[3] == -1:
            tupl = np.insert(tupl, 0, [i])
            level1.append(tupl)
    significant = []
    tooSmall = sobel_8u.size * 10 / 100
    for tupl in level1:
        contour = contours[tupl[0]];
        area = cv2.contourArea(contour)
        if area > tooSmall:
            cv2.drawContours(mask, \
                             [contour], 0, (0, 255, 0), \
                             2, cv2.LINE_AA, maxLevel=1)
            significant.append([contour, area])
    significant.sort(key=lambda x: x[1])
    significant = [x[0] for x in significant];
    peri = cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
    mask = sobel.copy()
    mask[mask > 0] = 0
    cv2.fillPoly(mask, significant, 255, 0)
    mask = np.logical_not(mask)
    img[mask] = 0;

    return img
layer.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
layer.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 58 收藏 0 点赞 0 评论 0
def _shuffle_roidb_inds(self):
        """Randomly permute the training roidb."""
        if cfg.TRAIN.ASPECT_GROUPING:
            widths = np.array([r['width'] for r in self._roidb])
            heights = np.array([r['height'] for r in self._roidb])
            horz = (widths >= heights)
            vert = np.logical_not(horz)
            horz_inds = np.where(horz)[0]
            vert_inds = np.where(vert)[0]
            inds = np.hstack((
                np.random.permutation(horz_inds),
                np.random.permutation(vert_inds)))
            inds = np.reshape(inds, (-1, 2))
            row_perm = np.random.permutation(np.arange(inds.shape[0]))
            inds = np.reshape(inds[row_perm, :], (-1,))
            self._perm = inds
        else:
            self._perm = np.random.permutation(np.arange(len(self._roidb)))
        self._cur = 0
loader.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)
loader.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def reset(self):
        self.cur = 0
        if self.shuffle:
            if self.aspect_grouping:
                widths = np.array([r['width'] for r in self.roidb])
                heights = np.array([r['height'] for r in self.roidb])
                horz = (widths >= heights)
                vert = np.logical_not(horz)
                horz_inds = np.where(horz)[0]
                vert_inds = np.where(vert)[0]
                inds = np.hstack((np.random.permutation(horz_inds), np.random.permutation(vert_inds)))
                extra = inds.shape[0] % self.batch_size
                inds_ = np.reshape(inds[:-extra], (-1, self.batch_size))
                row_perm = np.random.permutation(np.arange(inds_.shape[0]))
                inds[:-extra] = np.reshape(inds_[row_perm, :], (-1,))
                self.index = inds
            else:
                np.random.shuffle(self.index)


问题


面经


文章

微信
公众号

扫码关注公众号