python类mod()的实例源码

linalg.py 文件源码 项目:sporco 作者: bwohlberg 项目源码 文件源码 阅读 56 收藏 0 点赞 0 评论 0
def pyfftw_empty_aligned(shape, dtype, order='C', n=None):
    """
    Construct an empty byte-aligned array for efficient use by :mod:`pyfftw`.
    This function is a wrapper for :func:`pyfftw.empty_aligned`

    Parameters
    ----------
    shape : sequence of ints
      Output array shape
    dtype : dtype
      Output array dtype
    n : int, optional (default None)
      Output array should be aligned to n-byte boundary

    Returns
    -------
    a :  ndarray
      Empty array with required byte-alignment
    """

    return pyfftw.empty_aligned(shape, dtype, order, n)
linalg.py 文件源码 项目:sporco 作者: bwohlberg 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def blockcirculant(A):
    """
    Construct a block circulant matrix from a tuple of arrays. This is a
    block-matrix variant of :func:`scipy.linalg.circulant`.

    Parameters
    ----------
    A : tuple of array_like
      Tuple of arrays corresponding to the first block column of the output
      block matrix

    Returns
    -------
    B : ndarray
      Output array
    """

    r, c = A[0].shape
    B = np.zeros((len(A)*r, len(A)*c), dtype=A[0].dtype)
    for k in range(len(A)):
        for l in range(len(A)):
            kl = np.mod(k + l, len(A))
            B[r*kl:r*(kl+1), c*k:c*(k+1)] = A[l]
    return B
concave.py 文件源码 项目:neural-chessboard 作者: maciejczyzewski 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def SortByAngle(kNearestPoints, currentPoint, prevPoint):
    ''' Sorts the k nearest points given by angle '''
    angles = np.zeros(kNearestPoints.shape[0])
    i = 0
    for NearestPoint in kNearestPoints:
        # calculate the angle
        angle = np.arctan2(NearestPoint[1]-currentPoint[1],
                NearestPoint[0]-currentPoint[0]) - \
                np.arctan2(prevPoint[1]-currentPoint[1],
                prevPoint[0]-currentPoint[0])
        angle = np.rad2deg(angle)
        # only positive angles
        angle = np.mod(angle+360,360)
        #print NearestPoint[0], NearestPoint[1], angle
        angles[i] = angle
        i=i+1
    return kNearestPoints[np.argsort(angles)]
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def world_synthesis_time_base_generation(temporal_positions, f0, fs, vuv,
        time_axis, default_f0):
    f0_interpolated_raw = interp1d(temporal_positions, f0, kind="linear",
            fill_value="extrapolate")(time_axis)
    vuv_interpolated = interp1d(temporal_positions, vuv, kind="linear",
            fill_value="extrapolate")(time_axis)
    vuv_interpolated = vuv_interpolated > 0.5
    f0_interpolated = f0_interpolated_raw * vuv_interpolated.astype("float32")
    f0_interpolated[f0_interpolated == 0] = f0_interpolated[f0_interpolated == 0] + default_f0
    total_phase = np.cumsum(2 * np.pi * f0_interpolated / float(fs))

    core = np.mod(total_phase, 2 * np.pi)
    core = np.abs(core[1:] - core[:-1])
    # account for diff, avoid deprecation warning with [:-1]
    pulse_locations = time_axis[:-1][core > (np.pi / 2.)]
    pulse_locations_index = np.round(pulse_locations * fs).astype("int32")
    return pulse_locations, pulse_locations_index, vuv_interpolated
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def world_synthesis_time_base_generation(temporal_positions, f0, fs, vuv,
        time_axis, default_f0):
    f0_interpolated_raw = interp1d(temporal_positions, f0, kind="linear",
            fill_value="extrapolate")(time_axis)
    vuv_interpolated = interp1d(temporal_positions, vuv, kind="linear",
            fill_value="extrapolate")(time_axis)
    vuv_interpolated = vuv_interpolated > 0.5
    f0_interpolated = f0_interpolated_raw * vuv_interpolated.astype("float32")
    f0_interpolated[f0_interpolated == 0] = f0_interpolated[f0_interpolated == 0] + default_f0
    total_phase = np.cumsum(2 * np.pi * f0_interpolated / float(fs))

    core = np.mod(total_phase, 2 * np.pi)
    core = np.abs(core[1:] - core[:-1])
    # account for diff, avoid deprecation warning with [:-1]
    pulse_locations = time_axis[:-1][core > (np.pi / 2.)]
    pulse_locations_index = np.round(pulse_locations * fs).astype("int32")
    return pulse_locations, pulse_locations_index, vuv_interpolated
superres.py 文件源码 项目:OneNet 作者: image-science-lab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setup(x_shape, resize_ratio):

    box_size = 1.0 / resize_ratio
    if np.mod(x_shape[1], box_size) != 0 or np.mod(x_shape[2], box_size) != 0:
        print "only support width (and height) * resize_ratio is an interger!"


    def A_fun(x):
        y = box_average(x, int(box_size))
        return y

    def AT_fun(y):
        x = box_repeat(y, int(box_size))
        return x

    return (A_fun, AT_fun)
data_manager.py 文件源码 项目:deepmodels 作者: learningsociety 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def form_sets(samples, labels, max_num, verbose=False):
  """Form sample and label sets.
  """
  # form training set data
  set_ids = form_set_data(labels, max_num, verbose)
  set_data = []
  set_labels = []
  print "forming set samples"
  sys.stdout.flush()
  count = 0
  for key, ids in set_ids.iteritems():
    # ignore small sets
    if len(ids) < max_num:
      continue
    set_data.append(samples[ids])
    set_labels.append(labels[key])
    count += 1
    if np.mod(count, 500) == 0:
      sys.stdout.write(".")
      #sys.stdout.write(".{}-{}".format(key,train_labels[key]))
  sys.stdout.write("\n")
  return set_data, set_labels, set_ids
test_ufunc.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
field_functions.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def get_periodic_rvec(data):
    coords = obtain_rvec(data)
    if sum(data.ds.periodicity) == 0: return coords
    le = data.ds.domain_left_edge.in_units("code_length").d
    dw = data.ds.domain_width.in_units("code_length").d
    for i in range(coords.shape[0]):
        if not data.ds.periodicity[i]: continue
        coords[i, ...] -= le[i]
        #figure out which measure is less
        mins = np.argmin([np.abs(np.mod(coords[i, ...],  dw[i])),
                         np.abs(np.mod(coords[i, ...], -dw[i]))],
                         axis=0)
        temp_coords = np.mod(coords[i, ...], dw[i])

        #Where second measure is better, updating temporary coords
        ii = mins==1
        temp_coords[ii] = np.mod(coords[i, ...], -dw[i])[ii]

        # Putting the temporary coords into the actual storage
        coords[i, ...] = temp_coords

        coords[i, ...] + le[i]

    return coords
sdf.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def bbox_filter(left, right, domain_width):

    def myfilter(chunk, mask=None):
        pos = np.array([chunk['x'], chunk['y'], chunk['z']]).T

        # This hurts, but is useful for periodicity. Probably should check
        # first if it is even needed for a given left/right
        for i in range(3):
            pos[:, i] = np.mod(pos[:, i] - left[i], domain_width[i]) + left[i]

        # Now get all particles that are within the bbox
        if mask is None:
            mask = np.all(pos >= left, axis=1)
            np.logical_and(mask, np.all(pos < right, axis=1), mask)
        else:
            np.logical_and(mask, np.all(pos >= left, axis=1), mask)
            np.logical_and(mask, np.all(pos < right, axis=1), mask)
        return mask

    return myfilter
sdf.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def sphere_filter(center, radius, domain_width):

    def myfilter(chunk, mask=None):
        pos = np.array([chunk['x'], chunk['y'], chunk['z']]).T
        left = center-radius

        # This hurts, but is useful for periodicity. Probably should check
        # first if it is even needed for a given left/right
        for i in range(3):
            pos[:, i] = np.mod(pos[:, i] - left[i], domain_width[i]) + left[i]

        # Now get all particles that are within the radius
        if mask is None:
            mask = ((pos-center)**2).sum(axis=1)**0.5 < radius
        else:
            np.multiply(mask, np.linalg.norm(pos - center, 2) < radius, mask)
        return mask

    return myfilter
softmax.py 文件源码 项目:Gene_Chip 作者: ZhengtianXu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def train(self, x, y, learning_rate=1e-3, reg = 1e-5, num_iter=1500, batch_size=200):
        num_train, num_feature = x.shape
        num_classes = np.max(y) + 1
        if self.W == None:
            self.W = np.random.randn(num_feature, num_classes)

        loss_history = []
        acc_history = []
        for iter in range(num_iter):
            indices = np.random.choice(num_train, batch_size)
            x_batch = x[indices]
            y_batch = y[indices]
            loss, grad = self.loss(x_batch, y_batch, reg)
            acc = self.accuracy(x_batch, y_batch)
            loss_history.append(loss)
            acc_history.append(acc)
            self.W += -learning_rate * grad

            if np.mod(iter, 100) == 0:
                print("iteration {}/{} loss: {:.7f}".format(iter, num_iter, loss))
        return loss_history, acc_history
svm.py 文件源码 项目:Gene_Chip 作者: ZhengtianXu 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def train(self, x, y, learning_rate=1e-3, reg = 1e-5, num_iter=1500, batch_size=200):
        num_train, num_feature = x.shape
        num_classes = np.max(y) + 1
        if self.W == None:
            self.W = np.random.randn(num_feature, num_classes)

        loss_history = []
        accuracy_history = []
        for iter in range(num_iter):
            indices = np.random.choice(num_train, batch_size)
            x_batch = x[indices]
            y_batch = y[indices]
            loss, grad = self.loss(x_batch, y_batch, reg)
            acc = self.accuracy(x_batch, y_batch)
            loss_history.append(loss)
            accuracy_history.append(acc)
            self.W += -learning_rate * grad

            if np.mod(iter, 100) == 0:
                print("iteration {}/{} loss: {:.7f}".format(iter, num_iter, loss))
        return loss_history, accuracy_history
MFP_figlet_fonts.py 文件源码 项目:Neural_Network 作者: Shoeboxam 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def survey(self, quantity=None):
        if not quantity:
            quantity = len(self.ascii_vals)
        # x = np.linspace(0, len(self.ascii_vals) - 1, quantity).astype(int)  # Size changes error granularity
        x = np.random.randint(len(self.ascii_vals), size=quantity)

        if self.noise:
            generated_noise = np.random.normal(0., scale=len(self.character_set) // 2, size=self.stimuli[x].shape).astype(int)
            mask = np.random.binomial(1, self.noise, size=self.stimuli[x].shape)
            stimuli = np.mod(self.stimuli[x] + generated_noise * mask, len(self.character_set))
        else:
            stimuli = self.stimuli[x]

        print(self.reformat(stimuli))

        if self.autoencoder:
            return [stimuli.T, self.stimuli[x].T]
        else:
            return [stimuli.T, self.expected[x].T]
tfidf_weighted_word2vec.py 文件源码 项目:Sohu-LuckData-Image-Text-Matching-Competition 作者: WeitaoVan 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def doc2word2vec(data_txt_path, word2vec_model, save_path, dim=300, length=10):
    # do not use tf-idf values as coefficients.
    # usually because the data_txt_path is a tfidf-sorted text.
    # length = 1: mean of vectors
    # length > 1: concate vectors
    word2vec = pk.load(open(word2vec_model, 'r'))
    docs = open(data_txt_path).readlines()
    N = len(docs)
    feat = np.zeros((N, dim * length), dtype=np.float32)
    t0 = time.time()
    for idx, doc in enumerate(docs):
        words = doc.strip().split(' ')
        feat[idx, :] = create_vec_from_words(words, word2vec, dim, length)
        if np.mod(idx, 10000) == 0:
            t = time.time() - t0
            print '# %d, t = %d minutes' %(idx, t/60)
    h5file = h5py.File(save_path, 'w')
    h5file.create_dataset('feature', data=feat, dtype=np.float32)
    h5file.close()
    print 'saved to %s' %save_path
tfidf_weighted_word2vec.py 文件源码 项目:Sohu-LuckData-Image-Text-Matching-Competition 作者: WeitaoVan 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def tfidf_cluster_feature(data_txt_path, word2vec_distr_path, save_path, df_path, nDoc):
    word2vec_distr = pk.load(open(word2vec_distr_path))
    docs = open(data_txt_path).readlines()
    DF = pk.load(open(df_path))
    N = len(docs)
    DIM = word2vec_distr.values()[0].shape[0]
    h5file = h5py.File(save_path, 'w')
    feat = h5file.create_dataset('feature', shape=(N, DIM), dtype=np.float32)
    t0 = time.time()
    for idx, doc in enumerate(docs):
        words = doc.strip().split(' ')
        feat[idx, :] = compute_tfidf_cluster_feat(words, DF, nDoc, word2vec_distr)
        if np.mod(idx, 10000) == 0:
            t = time.time() - t0
            print '#%d, t = %d mins' %(idx, t/60)
    h5file.close()
    print 'saved to %s' %save_path
tfidf_from_seg.py 文件源码 项目:Sohu-LuckData-Image-Text-Matching-Competition 作者: WeitaoVan 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def compute_word2vec(docs, DF, nDoc, model, vecDim=300):
    N = len(docs)
    nonExist_vocab = {}
    feat = np.zeros((N, 300), dtype=np.float32)
    for idx, doc in enumerate(docs):
        nonExist_list = []
        TF = {}
        spt = doc.split(' ')
        nWord = len(spt)
        update_vocab(TF, spt)
        vec = np.zeros(vecDim, dtype=np.float32)
        for word, tf in TF.items():
            try:
                tfidf = 1.0 * tf / nWord * np.log2(1.0 * nDoc / DF[word])
                vec += tfidf * word2vec(model, word)
            except:
                nonExist_list.append(word)
                pass
        feat[idx, :] = vec
        update_vocab(nonExist_vocab, nonExist_list)
        if np.mod(idx, 10000) == 0:
            print '# %d' %idx
            print 'nonExist: %d' %len(nonExist_vocab.keys())
    return feat, nonExist_vocab
tfidf_from_seg.py 文件源码 项目:Sohu-LuckData-Image-Text-Matching-Competition 作者: WeitaoVan 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def tfidf(data_txt_path, df_path, nDoc, word2id_path, save_path):
    t0 = time.time()
    docs = open(data_txt_path).readlines()
    word2id = pk.load(open(word2id_path, 'r'))
    N = len(docs)
    DIM = len(word2id.keys())
    h5file = h5py.File(save_path, 'w')
    h5set = h5file.create_dataset('feature', shape=(N, DIM), dtype=np.float32)
    print 'word2id loaded from %s' %word2id_path
    print 'dataset created, shape (%d, %d)' %(N, DIM)
    # load DF
    DF = pk.load(open(df_path))
    # compute tfidf
    for idx, doc in enumerate(docs):
        feat= compute_tfidf(doc, DIM, DF, nDoc, word2id)
        h5set[idx, :] = feat.copy()
        if np.mod(idx, 10000) ==0:
            t = time.time() - t0
            print '# %d, t = %f hours' %(idx, t / 3600.)
    h5file.close()
    print 'TF-IDF feature saved to %s' %save_path
general.py 文件源码 项目:CRIkit2 作者: CoherentRamanNIST 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def row_col_from_lin(ct, sh):
    """
    Convert a 1D counter into a col and row counter
    """

    assert len(sh) == 2, 'Shape must be 2D'

    tot_rows = sh[0]
    tot_cols = sh[1]

    if isinstance(ct, _np.ndarray):
        if (ct > tot_rows*tot_cols).any():
            print('Count is out-of-range. Returning None.')
            return None
    else:
        if ct > tot_rows*tot_cols:
            print('Count is out-of-range. Returning None.')
            return None

    row = _np.mod(ct, tot_rows)
    col = ct//tot_rows

    return [row, col]


问题


面经


文章

微信
公众号

扫码关注公众号