python类frombuffer()的实例源码

input_data.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
tests.py 文件源码 项目:higlass-server 作者: hms-dbmi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_tile_symmetry(self):
        '''
        Make sure that tiles are symmetric
        '''
        upload_file = open('data/Dixon2012-J1-NcoI-R1-filtered.100kb.multires.cool', 'rb')
        tileset = tm.Tileset.objects.create(
            datafile=dcfu.SimpleUploadedFile(upload_file.name, upload_file.read()),
            filetype='cooler',
            datatype='matrix',
            owner=self.user1,
            uuid='aa')

        ret = self.client.get('/api/v1/tiles/?d=aa.0.0.0')


        contents = json.loads(ret.content.decode('utf-8'))

        import base64
        r = base64.decodestring(contents['aa.0.0.0']['dense'].encode('utf-8'))
        q = np.frombuffer(r, dtype=np.float16)

        q = q.reshape((256,256))
input_data.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
shp1.py 文件源码 项目:j3dview 作者: blank63 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def unpack_packet(stream,vertex_type,size):
    # The entire packet is read into memory at once for speed
    packet = stream.read(size)
    primitives = []
    i = 0

    while i < size:
        opcode = packet[i]
        if opcode == 0x00:
            i += 1
            continue
        primitive_type = gx.PrimitiveType(opcode)
        vertex_count = uint16.unpack_from(packet,i + 1)
        vertices = numpy.frombuffer(packet,vertex_type,vertex_count,i + 3)
        primitives.append(Primitive(primitive_type,vertices))
        i += 3 + vertex_count*vertex_type.itemsize

    return primitives
elphyio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def load_bytes(self, data_blocks, dtype='<i1', start=None, end=None, expected_size=None):
        """
        Return list of bytes contained
        in the specified set of blocks.

        NB : load all data as files cannot exceed 4Gb 
             find later other solutions to spare memory.
        """
        chunks = list()
        raw = ''
        # keep only data blocks having
        # a size greater than zero
        blocks = [k for k in data_blocks if k.size > 0]
        for data_block in blocks :
            self.file.seek(data_block.start)
            raw = self.file.read(data_block.size)[0:expected_size]
            databytes = np.frombuffer(raw, dtype=dtype)
            chunks.append(databytes)
        # concatenate all chunks and return
        # the specified slice
        if len(chunks)>0 :
            databytes = np.concatenate(chunks)
            return databytes[start:end]
        else :
            return np.array([])
elphyio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_channel_data(self, ep, ch):
        """
        Return a numpy array containing the
        list of bytes corresponding to the
        specified episode and channel.
        """
        #memorise the sample size and symbol
        sample_size = self.sample_size(ep, ch)
        sample_symbol = self.sample_symbol(ep, ch)

        #create a bit mask to define which
        #sample to keep from the file
        bit_mask = self.create_bit_mask(ep, ch)

        #load all bytes contained in an episode
        data_blocks = self.get_data_blocks(ep)
        databytes = self.load_bytes(data_blocks)
        raw = self.filter_bytes(databytes, bit_mask)

        #reshape bytes from the sample size
        dt = np.dtype(numpy_map[sample_symbol])
        dt.newbyteorder('<')
        return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)
elphyio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_bytes(self, data_blocks, dtype='<i1', start=None, end=None, expected_size=None):
        """
        Return list of bytes contained
        in the specified set of blocks.

        NB : load all data as files cannot exceed 4Gb 
             find later other solutions to spare memory.
        """
        chunks = list()
        raw = ''
        # keep only data blocks having
        # a size greater than zero
        blocks = [k for k in data_blocks if k.size > 0]
        for data_block in blocks :
            self.file.seek(data_block.start)
            raw = self.file.read(data_block.size)[0:expected_size]
            databytes = np.frombuffer(raw, dtype=dtype)
            chunks.append(databytes)
        # concatenate all chunks and return
        # the specified slice
        if len(chunks)>0 :
            databytes = np.concatenate(chunks)
            return databytes[start:end]
        else :
            return np.array([])
elphyio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def load_channel_data(self, ep, ch):
        """
        Return a numpy array containing the
        list of bytes corresponding to the
        specified episode and channel.
        """
        #memorise the sample size and symbol
        sample_size = self.sample_size(ep, ch)
        sample_symbol = self.sample_symbol(ep, ch)

        #create a bit mask to define which
        #sample to keep from the file
        bit_mask = self.create_bit_mask(ep, ch)

        #load all bytes contained in an episode
        data_blocks = self.get_data_blocks(ep)
        databytes = self.load_bytes(data_blocks)
        raw = self.filter_bytes(databytes, bit_mask)

        #reshape bytes from the sample size
        dt = np.dtype(numpy_map[sample_symbol])
        dt.newbyteorder('<')
        return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)
elphyio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_encoded_spikes(self, episode, evt_channel, identifier):
        """
        Return times stored as a 4-bytes integer
        in the specified spike channel.
        NB: it is meant for Blackrock-type, having an additional byte for each event time as spike sorting label.
            These additiona bytes are appended trailing the times.
        """
        # to load the requested spikes for the specified episode and event channel:
        # get all the elphy blocks having as identifier 'RSPK' (or whatever)
        all_rspk_blocks = [k for k in self.blocks if k.identifier == identifier]
        rspk_block = all_rspk_blocks[episode-1]
        # RDATA(h?dI) REVT(NbVeV:I, NbEv:256I ... spike data are 4byte integers
        rspk_header = 4*( rspk_block.size - rspk_block.data_size-2 + len(rspk_block.n_events))
        pre_events = np.sum(rspk_block.n_events[0:evt_channel-1], dtype=int, axis=0)
        # the real start is after header, preceeding events (which are 4byte) and preceeding labels (1byte)
        start = rspk_header + (4*pre_events) + pre_events
        end = start + 4*rspk_block.n_events[evt_channel-1]
        raw = self.load_bytes( [rspk_block], dtype='<i1', start=start, end=end, expected_size=rspk_block.size )
        # re-encoding after reading byte by byte
        res = np.frombuffer(raw[0:(4*rspk_block.n_events[evt_channel-1])], dtype='<i4')
        res.sort() # sometimes timings are not sorted
        #print "load_encoded_data() - spikes:",res
        return res
mnist.py 文件源码 项目:tfplus 作者: renmengye 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    log = logger.get()
    log.info('Extracting {}'.format(filename))
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data
mnist.py 文件源码 项目:tfplus 作者: renmengye 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def extract_labels(filename, one_hot=False):
    """Extract the labels into a 1D uint8 numpy array [index]."""
    log = logger.get()
    log.info('Extracting {}'.format(filename))
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2049:
            raise ValueError(
                'Invalid magic number %d in MNIST label file: %s' %
                (magic, filename))
        num_items = _read32(bytestream)
        buf = bytestream.read(num_items)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
        if one_hot:
            return dense_to_one_hot(labels)
        return labels
mias_preprocess.py 文件源码 项目:Unsupervised-Anomaly-Detection-with-Generative-Adversarial-Networks 作者: xtarx 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_pgm(filename, byteorder='>'):
    """Return image data from a raw PGM file as numpy array.

    Format specification: http://netpbm.sourceforge.net/doc/pgm.html

    """
    with open(filename, 'rb') as f:
        buffer = f.read()
    try:
        header, width, height, maxval = re.search(
            b"(^P5\s(?:\s*#.*[\r\n])*"
            b"(\d+)\s(?:\s*#.*[\r\n])*"
            b"(\d+)\s(?:\s*#.*[\r\n])*"
            b"(\d+)\s(?:\s*#.*[\r\n]\s)*)", buffer).groups()
    except AttributeError:
        raise ValueError("Not a raw PGM file: '%s'" % filename)
    return np.frombuffer(buffer,
                         dtype='u1' if int(maxval) < 256 else byteorder + 'u2',
                         count=int(width) * int(height),
                         offset=len(header)
                         ).reshape((int(height), int(width)))
mnist_data.py 文件源码 项目:ladder 作者: abhiskk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def extract_images(filename, verbose=True):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    if verbose:
        print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
              'Invalid magic number %d in MNIST image file: %s' %
              (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = np.frombuffer(buf, dtype=np.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data
test_message.py 文件源码 项目:zanph 作者: zanph 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_buffer_numpy(self):
        """test non-copying numpy array messages"""
        try:
            import numpy
        except ImportError:
            raise SkipTest("numpy required")
        rand = numpy.random.randint
        shapes = [ rand(2,16) for i in range(5) ]
        for i in range(1,len(shapes)+1):
            shape = shapes[:i]
            A = numpy.random.random(shape)
            m = zmq.Frame(A)
            if view.__name__ == 'buffer':
                self.assertEqual(A.data, m.buffer)
                B = numpy.frombuffer(m.buffer,dtype=A.dtype).reshape(A.shape)
            else:
                self.assertEqual(memoryview(A), m.buffer)
                B = numpy.array(m.buffer,dtype=A.dtype).reshape(A.shape)
            self.assertEqual((A==B).all(), True)
input_data.py 文件源码 项目:tensorflow-basic 作者: weaponsjtu 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
mnist_data.py 文件源码 项目:tf_base 作者: ozansener 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
input_data.py 文件源码 项目:rbm-ae-tf 作者: Cospel 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with tf.gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
pickle_data.py 文件源码 项目:wikilinks 作者: trovdimi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def pickle_transitions_matrix_data():
    transitions = pickle.load( open( "/ssd/ddimitrov/pickle/transitions", "rb" ) )
    vocab = pickle.load( open( "/ssd/ddimitrov/pickle/vocab", "rb" ) )

    i_indices = array.array(str("l"))
    j_indices = array.array(str("l"))
    values = array.array(str("d"))

    for s, targets in transitions.iteritems():
        for t, v in targets.iteritems():
            i_indices.append(vocab[s])
            j_indices.append(vocab[t])
            values.append(v)

    i_indices = np.frombuffer(i_indices, dtype=np.int_)
    j_indices = np.frombuffer(j_indices, dtype=np.int_)
    values = np.frombuffer(values, dtype=np.float64)
    transition_matrix=[i_indices,j_indices,values]
    pickle.dump(transition_matrix, open("/ssd/ddimitrov/pickle/transition_matrix", "wb"), protocol=pickle.HIGHEST_PROTOCOL)
    print "transition_matrix"
mnist.py 文件源码 项目:taskcv-2017-public 作者: VisionLearningGroup 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _read_datafile(self, path, expected_dims):
        """Helper function to read a file in IDX format."""
        base_magic_num = 2048
        with gzip.GzipFile(path) as f:
            magic_num = struct.unpack('>I', f.read(4))[0]
            expected_magic_num = base_magic_num + expected_dims
            if magic_num != expected_magic_num:
                raise ValueError('Incorrect MNIST magic number (expected '
                                 '{}, got {})'
                                 .format(expected_magic_num, magic_num))
            dims = struct.unpack('>' + 'I' * expected_dims,
                                 f.read(4 * expected_dims))
            buf = f.read(reduce(operator.mul, dims))
            data = np.frombuffer(buf, dtype=np.uint8)
            data = data.reshape(*dims)
            return data
helper.py 文件源码 项目:deep-learning-nd 作者: RyanCCollins 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _ungzip(save_path, extract_path, database_name, _):
    """
    Unzip a gzip file and extract it to extract_path
    :param save_path: The path of the gzip files
    :param extract_path: The location to extract the data to
    :param database_name: Name of database
    :param _: HACK - Used to have to same interface as _unzip
    """
    # Get data from save_path
    with open(save_path, 'rb') as f:
        with gzip.GzipFile(fileobj=f) as bytestream:
            magic = _read32(bytestream)
            if magic != 2051:
                raise ValueError('Invalid magic number {} in file: {}'.format(magic, f.name))
            num_images = _read32(bytestream)
            rows = _read32(bytestream)
            cols = _read32(bytestream)
            buf = bytestream.read(rows * cols * num_images)
            data = np.frombuffer(buf, dtype=np.uint8)
            data = data.reshape(num_images, rows, cols)

    # Save data to extract_path
    for image_i, image in enumerate(
            tqdm(data, unit='File', unit_scale=True, miniters=1, desc='Extracting {}'.format(database_name))):
        Image.fromarray(image, 'L').save(os.path.join(extract_path, 'image_{}.jpg'.format(image_i)))
input_data.py 文件源码 项目:tensorflow-udacity-deep-learning 作者: hpssjellis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
input_data.py 文件源码 项目:tensorflow-udacity-deep-learning 作者: hpssjellis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
input_data.py 文件源码 项目:tensorflow-udacity-deep-learning 作者: hpssjellis 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
X6.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def receive_data(self, channel, oc):
        # push data from a socket into an OutputConnector (oc)
        self.last_timestamp = datetime.datetime.now()
        # wire format is just: [size, buffer...]
        sock = self._chan_to_rsocket[channel]
        # TODO receive 4 or 8 bytes depending on sizeof(size_t)
        msg = sock.recv(8)
        # reinterpret as int (size_t)
        msg_size = struct.unpack('n', msg)[0]
        buf = sock.recv(msg_size, socket.MSG_WAITALL)
        if len(buf) != msg_size:
            logger.error("Channel %s socket msg shorter than expected" % channel.channel)
            logger.error("Expected %s bytes, received %s bytes" % (msg_size, len(buf)))
            # assume that we cannot recover, so stop listening.
            loop = asyncio.get_event_loop()
            loop.remove_reader(sock)
            return
        data = np.frombuffer(buf, dtype=channel.dtype)
        asyncio.ensure_future(oc.push(data))
alazar.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def receive_data(self, channel, oc):
        # push data from a socket into an OutputConnector (oc)
        self.last_timestamp = datetime.datetime.now()
        self.fetch_count += 1
        # wire format is just: [size, buffer...]
        sock = self._chan_to_rsocket[channel]
        # TODO receive 4 or 8 bytes depending on sizeof(size_t)
        msg = sock.recv(8)
        # reinterpret as int (size_t)
        msg_size = struct.unpack('n', msg)[0]
        buf = sock.recv(msg_size, socket.MSG_WAITALL)
        if len(buf) != msg_size:
            logger.error("Channel %s socket msg shorter than expected" % channel.channel)
            logger.error("Expected %s bytes, received %s bytes" % (msg_size, len(buf)))
            # assume that we cannot recover, so stop listening.
            loop = asyncio.get_event_loop()
            loop.remove_reader(sock)
            return
        data = np.frombuffer(buf, dtype=np.float32)
        asyncio.ensure_future(oc.push(data))
matplotlib-client.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def loop(self):
        while self.running:
            evts = dict(self.poller.poll(50))
            if self.socket in evts and evts[self.socket] == zmq.POLLIN:
                msg = self.socket.recv_multipart()
                msg_type = msg[0].decode()
                name     = msg[1].decode()
                if msg_type == "done":
                    self.finished.emit(True)
                elif msg_type == "data":
                    result = [name]
                    # How many pairs of metadata and data are there?
                    num_arrays = int((len(msg) - 2)/2)
                    for i in range(num_arrays):
                        md, data = msg[2+2*i:4+2*i]
                        md = json.loads(md.decode())
                        A = np.frombuffer(data, dtype=md['dtype'])
                        result.append(A)
                    self.message.emit(tuple(result))
        self.socket.close()
redpitaya_client.py 文件源码 项目:pyrpl 作者: lneuhaus 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _reads(self, addr, length):
        if length > 65535:
            length = 65535
            self.logger.warning("Maximum read-length is %d", length)
        header = b'r' + bytes(bytearray([0,
                                         length & 0xFF, (length >> 8) & 0xFF,
                                         addr & 0xFF, (addr >> 8) & 0xFF, (addr >> 16) & 0xFF, (addr >> 24) & 0xFF]))
        self.socket.send(header)
        data = self.socket.recv(length * 4 + 8)
        while (len(data) < length * 4 + 8):
            data += self.socket.recv(length * 4 - len(data) + 8)
        if data[:8] == header:  # check for in-sync transmission
            return np.frombuffer(data[8:], dtype=np.uint32)
        else:  # error handling
            self.logger.error("Wrong control sequence from server: %s", data[:8])
            self.emptybuffer()
            return None
wav_split.py 文件源码 项目:asr_preprocessing 作者: hirofumi0810 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read(self):
        """Return audio file as array of integer.
        Returns:
            audio_data: np.ndarray, shape of (frame_num,)
        """
        # Read wav file
        with wave.open(self.file_path, "r") as wav:
            # Move to head of the audio file
            wav.rewind()

            self.frame_num = wav.getnframes()
            self.sampling_rate = wav.getframerate()  # 16,000 Hz
            self.channels = wav.getnchannels()
            self.sample_size = wav.getsampwidth()  # 2

            # Read to buffer as binary format
            buf = wav.readframes(self.frame_num)

        if self.channels == 1:
            audio_data = np.frombuffer(buf, dtype="int16")
        elif self.channels == 2:
            audio_data = np.frombuffer(buf, dtype="int32")

        return audio_data
mnist.py 文件源码 项目:tflearn 作者: tflearn 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data
input_data.py 文件源码 项目:hipsternet 作者: wiseodd 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data


问题


面经


文章

微信
公众号

扫码关注公众号