python类identity()的实例源码

transformations.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
    >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
    True

    """
    q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
    nq = numpy.dot(q, q)
    if nq < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / nq)
    q = numpy.outer(q, q)
    return numpy.array((
        (1.0-q[1, 1]-q[2, 2],     q[0, 1]-q[2, 3],     q[0, 2]+q[1, 3], 0.0),
        (    q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2],     q[1, 2]-q[0, 3], 0.0),
        (    q[0, 2]-q[1, 3],     q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
        (                0.0,                 0.0,                 0.0, 1.0)
        ), dtype=numpy.float64)
transformations.py 文件源码 项目:Neural-Networks-for-Inverse-Kinematics 作者: paramrajpura 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def reflection_matrix(point, normal):
    """Return matrix to mirror at plane defined by point and normal vector.

    >>> v0 = numpy.random.random(4) - 0.5
    >>> v0[3] = 1.
    >>> v1 = numpy.random.random(3) - 0.5
    >>> R = reflection_matrix(v0, v1)
    >>> numpy.allclose(2, numpy.trace(R))
    True
    >>> numpy.allclose(v0, numpy.dot(R, v0))
    True
    >>> v2 = v0.copy()
    >>> v2[:3] += v1
    >>> v3 = v0.copy()
    >>> v2[:3] -= v1
    >>> numpy.allclose(v2, numpy.dot(R, v3))
    True

    """
    normal = unit_vector(normal[:3])
    M = numpy.identity(4)
    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
    return M
transformations.py 文件源码 项目:Neural-Networks-for-Inverse-Kinematics 作者: paramrajpura 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]])
transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def reflection_matrix(point, normal):
    """Return matrix to mirror at plane defined by point and normal vector.

    >>> v0 = numpy.random.random(4) - 0.5
    >>> v0[3] = 1.0
    >>> v1 = numpy.random.random(3) - 0.5
    >>> R = reflection_matrix(v0, v1)
    >>> numpy.allclose(2., numpy.trace(R))
    True
    >>> numpy.allclose(v0, numpy.dot(R, v0))
    True
    >>> v2 = v0.copy()
    >>> v2[:3] += v1
    >>> v3 = v0.copy()
    >>> v2[:3] -= v1
    >>> numpy.allclose(v2, numpy.dot(R, v3))
    True

    """
    normal = unit_vector(normal[:3])
    M = numpy.identity(4)
    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
    return M
transformations.py 文件源码 项目:esys-pbi 作者: fsxfreak 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def reflection_matrix(point, normal):
    """Return matrix to mirror at plane defined by point and normal vector.

    >>> v0 = numpy.random.random(4) - 0.5
    >>> v0[3] = 1.
    >>> v1 = numpy.random.random(3) - 0.5
    >>> R = reflection_matrix(v0, v1)
    >>> numpy.allclose(2, numpy.trace(R))
    True
    >>> numpy.allclose(v0, numpy.dot(R, v0))
    True
    >>> v2 = v0.copy()
    >>> v2[:3] += v1
    >>> v3 = v0.copy()
    >>> v2[:3] -= v1
    >>> numpy.allclose(v2, numpy.dot(R, v3))
    True

    """
    normal = unit_vector(normal[:3])
    M = numpy.identity(4)
    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
    return M
transformations.py 文件源码 项目:esys-pbi 作者: fsxfreak 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def orthogonalization_matrix(lengths, angles):
    """Return orthogonalization matrix for crystallographic cell coordinates.

    Angles are expected in degrees.

    The de-orthogonalization matrix is the inverse.

    >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
    True
    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
    >>> numpy.allclose(numpy.sum(O), 43.063229)
    True

    """
    a, b, c = lengths
    angles = numpy.radians(angles)
    sina, sinb, _ = numpy.sin(angles)
    cosa, cosb, cosg = numpy.cos(angles)
    co = (cosa * cosb - cosg) / (sina * sinb)
    return numpy.array([
        [ a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0],
        [-a*sinb*co,                    b*sina, 0.0, 0.0],
        [ a*cosb,                       b*cosa, c,   0.0],
        [ 0.0,                          0.0,    0.0, 1.0]])
transformations.py 文件源码 项目:esys-pbi 作者: fsxfreak 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]])
test_defmatrix.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_basic(self):
        import numpy.linalg as linalg

        A = np.array([[1., 2.], [3., 4.]])
        mA = matrix(A)

        B = np.identity(2)
        for i in range(6):
            assert_(np.allclose((mA ** i).A, B))
            B = np.dot(B, A)

        Ainv = linalg.inv(A)
        B = np.identity(2)
        for i in range(6):
            assert_(np.allclose((mA ** -i).A, B))
            B = np.dot(B, Ainv)

        assert_(np.allclose((mA * mA).A, np.dot(A, A)))
        assert_(np.allclose((mA + mA).A, (A + A)))
        assert_(np.allclose((3*mA).A, (3*A)))

        mA2 = matrix(A)
        mA2 *= 3
        assert_(np.allclose(mA2.A, 3*A))
transforms.py 文件源码 项目:Sverchok 作者: Sverchok 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def reflection_matrix(point, normal):
    """Return matrix to mirror at plane defined by point and normal vector.

    >>> v0 = numpy.random.random(4) - 0.5
    >>> v0[3] = 1.
    >>> v1 = numpy.random.random(3) - 0.5
    >>> R = reflection_matrix(v0, v1)
    >>> numpy.allclose(2, numpy.trace(R))
    True
    >>> numpy.allclose(v0, numpy.dot(R, v0))
    True
    >>> v2 = v0.copy()
    >>> v2[:3] += v1
    >>> v3 = v0.copy()
    >>> v2[:3] -= v1
    >>> numpy.allclose(v2, numpy.dot(R, v3))
    True

    """
    normal = unit_vector(normal[:3])
    M = numpy.identity(4)
    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
    return M
transforms.py 文件源码 项目:Sverchok 作者: Sverchok 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def orthogonalization_matrix(lengths, angles):
    """Return orthogonalization matrix for crystallographic cell coordinates.

    Angles are expected in degrees.

    The de-orthogonalization matrix is the inverse.

    >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
    True
    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
    >>> numpy.allclose(numpy.sum(O), 43.063229)
    True

    """
    a, b, c = lengths
    angles = numpy.radians(angles)
    sina, sinb, _ = numpy.sin(angles)
    cosa, cosb, cosg = numpy.cos(angles)
    co = (cosa * cosb - cosg) / (sina * sinb)
    return numpy.array([
        [ a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0],
        [-a*sinb*co,                    b*sina, 0.0, 0.0],
        [ a*cosb,                       b*cosa, c,   0.0],
        [ 0.0,                          0.0,    0.0, 1.0]])
transforms.py 文件源码 项目:Sverchok 作者: Sverchok 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]])
tools.py 文件源码 项目:caltech-machine-learning 作者: zhiyanfoo 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def svm(x, y):
    """
    classification SVM

    Minimize
    1/2 * w^T w
    subject to
    y_n (w^T x_n + b) >= 1
    """
    weights_total = len(x[0])
    I_n = np.identity(weights_total-1)
    P_int =  np.vstack(([np.zeros(weights_total-1)], I_n))
    zeros = np.array([np.zeros(weights_total)]).T
    P = np.hstack((zeros, P_int))
    q = np.zeros(weights_total)
    G = -1 * vec_to_dia(y).dot(x)
    h = -1 * np.ones(len(y))
    matrix_arg = [ matrix(x) for x in [P,q,G,h] ]
    sol = solvers.qp(*matrix_arg)
    return np.array(sol['x']).flatten()
glm.py 文件源码 项目:DenseHumanBodyCorrespondences 作者: halimacc 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def lookat(eye, center, up):
    f = normalize(center - eye)
    s = normalize(cross(f, up))
    u = cross(s, f)

    res = identity()
    res[0][0] = s[0]
    res[1][0] = s[1]
    res[2][0] = s[2]
    res[0][1] = u[0]
    res[1][1] = u[1]
    res[2][1] = u[2]
    res[0][2] = -f[0]
    res[1][2] = -f[1]
    res[2][2] = -f[2]
    res[3][0] = -dot(s, eye)
    res[3][1] = -dot(u, eye)
    res[3][2] = -dot(f, eye)
    return res.T
transformations.py 文件源码 项目:BlenderRobotDesigner 作者: HBPNeurorobotics 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def reflection_matrix(point, normal):
    """Return matrix to mirror at plane defined by point and normal vector.

    >>> v0 = numpy.random.random(4) - 0.5
    >>> v0[3] = 1.
    >>> v1 = numpy.random.random(3) - 0.5
    >>> R = reflection_matrix(v0, v1)
    >>> numpy.allclose(2, numpy.trace(R))
    True
    >>> numpy.allclose(v0, numpy.dot(R, v0))
    True
    >>> v2 = v0.copy()
    >>> v2[:3] += v1
    >>> v3 = v0.copy()
    >>> v2[:3] -= v1
    >>> numpy.allclose(v2, numpy.dot(R, v3))
    True

    """
    normal = unit_vector(normal[:3])
    M = numpy.identity(4)
    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
    return M
transformations.py 文件源码 项目:BlenderRobotDesigner 作者: HBPNeurorobotics 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def orthogonalization_matrix(lengths, angles):
    """Return orthogonalization matrix for crystallographic cell coordinates.

    Angles are expected in degrees.

    The de-orthogonalization matrix is the inverse.

    >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
    True
    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
    >>> numpy.allclose(numpy.sum(O), 43.063229)
    True

    """
    a, b, c = lengths
    angles = numpy.radians(angles)
    sina, sinb, _ = numpy.sin(angles)
    cosa, cosb, cosg = numpy.cos(angles)
    co = (cosa * cosb - cosg) / (sina * sinb)
    return numpy.array([
        [ a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0],
        [-a*sinb*co,                    b*sina, 0.0, 0.0],
        [ a*cosb,                       b*cosa, c,   0.0],
        [ 0.0,                          0.0,    0.0, 1.0]])
transformations.py 文件源码 项目:BlenderRobotDesigner 作者: HBPNeurorobotics 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]])
SPIND.py 文件源码 项目:SPIND 作者: LiuLab-CSRC 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def calc_rotation_matrix(q1, q2, ref_q1, ref_q2):
  ref_nv = np.cross(ref_q1, ref_q2) 
  q_nv = np.cross(q1, q2)
  if min(norm(ref_nv), norm(q_nv)) == 0.:  # avoid 0 degree including angle
    return np.identity(3)
  axis = np.cross(ref_nv, q_nv)
  angle = rad2deg(acos(ref_nv.dot(q_nv) / (norm(ref_nv) * norm(q_nv))))
  R1 = axis_angle_to_rotation_matrix(axis, angle)
  rot_ref_q1, rot_ref_q2 = R1.dot(ref_q1), R1.dot(ref_q2)  # rotate ref_q1,2 plane to q1,2 plane

  cos1 = max(min(q1.dot(rot_ref_q1) / (norm(rot_ref_q1) * norm(q1)), 1.), -1.)  # avoid math domain error
  cos2 = max(min(q2.dot(rot_ref_q2) / (norm(rot_ref_q2) * norm(q2)), 1.), -1.)
  angle1 = rad2deg(acos(cos1))
  angle2 = rad2deg(acos(cos2))
  angle = (angle1 + angle2) / 2.
  axis = np.cross(rot_ref_q1, q1)
  R2 = axis_angle_to_rotation_matrix(axis, angle)

  R = R2.dot(R1)
  return R
metropolis_hastings.py 文件源码 项目:pyflux 作者: RJT1990 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, posterior, scale, nsims, initials, 
        cov_matrix=None, thinning=2, warm_up_period=True, model_object=None, quiet_progress=False):
        self.posterior = posterior
        self.scale = scale
        self.nsims = (1+warm_up_period)*nsims*thinning
        self.initials = initials
        self.param_no = self.initials.shape[0]
        self.phi = np.zeros([self.nsims, self.param_no])
        self.phi[0] = self.initials # point from which to start the Metropolis-Hasting algorithm
        self.quiet_progress = quiet_progress

        if cov_matrix is None:
            self.cov_matrix = np.identity(self.param_no) * np.abs(self.initials)
        else:
            self.cov_matrix = cov_matrix

        self.thinning = thinning
        self.warm_up_period = warm_up_period

        if model_object is not None:
            self.model = model_object
dynlin.py 文件源码 项目:pyflux 作者: RJT1990 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _ss_matrices(self, beta):
        """ Creates the state space matrices required

        Parameters
        ----------
        beta : np.array
            Contains untransformed starting values for latent variables

        Returns
        ----------
        T, Z, R, Q, H : np.array
            State space matrices used in KFS algorithm
        """     

        T = np.identity(self.z_no-1)
        H = np.identity(1)*self.latent_variables.z_list[0].prior.transform(beta[0])       
        Z = self.X
        R = np.identity(self.z_no-1)

        Q = np.identity(self.z_no-1)
        for i in range(0,self.z_no-1):
            Q[i][i] = self.latent_variables.z_list[i+1].prior.transform(beta[i+1])

        return T, Z, R, Q, H
dar.py 文件源码 项目:pyflux 作者: RJT1990 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _ss_matrices(self,beta):
        """ Creates the state space matrices required

        Parameters
        ----------
        beta : np.array
            Contains untransformed starting values for latent variables

        Returns
        ----------
        T, Z, R, Q, H : np.array
            State space matrices used in KFS algorithm
        """     

        T = np.identity(self.z_no-1)
        H = np.identity(1)*self.latent_variables.z_list[0].prior.transform(beta[0])       
        Z = self.X
        R = np.identity(self.z_no-1)

        Q = np.identity(self.z_no-1)
        for i in range(0,self.z_no-1):
            Q[i][i] = self.latent_variables.z_list[i+1].prior.transform(beta[i+1])

        return T, Z, R, Q, H
llm.py 文件源码 项目:pyflux 作者: RJT1990 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _ss_matrices(self,beta):
        """ Creates the state space matrices required

        Parameters
        ----------
        beta : np.array
            Contains untransformed starting values for latent_variables

        Returns
        ----------
        T, Z, R, Q, H : np.array
            State space matrices used in KFS algorithm
        """     

        T = np.identity(1)
        R = np.identity(1)
        Z = np.identity(1)
        H = np.identity(1)*self.latent_variables.z_list[0].prior.transform(beta[0])
        Q = np.identity(1)*self.latent_variables.z_list[1].prior.transform(beta[1])

        return T, Z, R, Q, H
nllm.py 文件源码 项目:pyflux 作者: RJT1990 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _ss_matrices(self, beta):
        """ Creates the state space matrices required

        Parameters
        ----------
        beta : np.array
            Contains untransformed starting values for latent variables

        Returns
        ----------
        T, Z, R, Q : np.array
            State space matrices used in KFS algorithm
        """     

        T = np.identity(1)
        R = np.identity(1)
        Z = np.identity(1)
        Q = np.identity(1)*self.latent_variables.z_list[0].prior.transform(beta[0])

        return T, Z, R, Q
ndynlin.py 文件源码 项目:pyflux 作者: RJT1990 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _ss_matrices(self,beta):
        """ Creates the state space matrices required

        Parameters
        ----------
        beta : np.array
            Contains untransformed starting values for latent variables

        Returns
        ----------
        T, Z, R, Q : np.array
            State space matrices used in KFS algorithm
        """     


        T = np.identity(self.state_no)
        Z = self.X
        R = np.identity(self.state_no)

        Q = np.identity(self.state_no)
        for i in range(0,self.state_no):
            Q[i][i] = self.latent_variables.z_list[i].prior.transform(beta[i])

        return T, Z, R, Q
Compiler.py 文件源码 项目:QGL 作者: BBN-Q 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def setup_awg_channels(physicalChannels):
    translators = {}
    for chan in physicalChannels:
        translators[chan.instrument] = import_module('QGL.drivers.' + chan.translator)

    data = {awg: translator.get_empty_channel_set()
            for awg, translator in translators.items()}
    for name, awg in data.items():
        for chan in awg.keys():
            awg[chan] = {
                'linkList': [],
                'wfLib': {},
                'correctionT': np.identity(2)
            }
        data[name]['translator'] = translators[name]
        data[name]['seqFileExt'] = translators[name].get_seq_file_extension()
    return data
transformations.py 文件源码 项目:Safe-RL-Benchmark 作者: befelix 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def reflection_matrix(point, normal):
    """Return matrix to mirror at plane defined by point and normal vector.

    >>> v0 = numpy.random.random(4) - 0.5
    >>> v0[3] = 1.0
    >>> v1 = numpy.random.random(3) - 0.5
    >>> R = reflection_matrix(v0, v1)
    >>> numpy.allclose(2., numpy.trace(R))
    True
    >>> numpy.allclose(v0, numpy.dot(R, v0))
    True
    >>> v2 = v0.copy()
    >>> v2[:3] += v1
    >>> v3 = v0.copy()
    >>> v2[:3] -= v1
    >>> numpy.allclose(v2, numpy.dot(R, v3))
    True

    """
    normal = unit_vector(normal[:3])
    M = numpy.identity(4)
    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
    return M
quaternion.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def dexp(v):
    x = np.linalg.norm(v)
    a = trig.sinox(x)
    b = trig.cosox2(x)
    c = trig.sinox3(x)
    I = np.identity(3)
    S = skew(v)
    W = v * v.transpose()
    return a*I + b*S + c*W
quaternion.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def dlog(v):
    x = np.linalg.norm(v)
    y = trig.specialFun4(x)
    z = trig.specialFun2(x)
    I = np.identity(3)
    S = skew(v)
    W = v * v.transpose()
    return y*I - 0.5*S + z*W
pose.py 文件源码 项目:joysix 作者: niberger 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def mt(v):
    r = v[0:3]
    t = v[3:6]
    x = np.linalg.norm(r)
    b = trig.cosox2(x)
    c = trig.sinox3(x)
    g = trig.specialFun1(x)
    h = trig.specialFun3(x)
    I = np.identity(3)
    return b*quat.skew(t) + c*(r*t.transpose() + t*r.transpose()) + v3.dot(r,t)*((c - b) * I + g*quat.skew(r) + h*r*r.transpose())
abstract.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_embeddings(self, *args):
        return np.identity(self.output_size, np.float32)
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def fit(self, paths):
        featmat = np.concatenate([self._features(path) for path in paths])
        returns = np.concatenate([path["returns"] for path in paths])
        n_col = featmat.shape[1]
        lamb = 2.0
        self.coeffs = np.linalg.lstsq(featmat.T.dot(featmat) + lamb * np.identity(n_col), featmat.T.dot(returns))[0]


问题


面经


文章

微信
公众号

扫码关注公众号