python类var()的实例源码

core_test.py 文件源码 项目:meterstick 作者: google 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def testRelativeToJackknife(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9],
                         "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([1, 2], name="Y")
    correct = pd.DataFrame(
        np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))],
                  [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
core_test.py 文件源码 项目:meterstick 作者: google 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def testRelativeToJackknifeIncludeBaseline(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9],
                         "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0, include_base=True)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([0, 1, 2], name="Y")
    correct = pd.DataFrame(
        np.array([[0.0, 0.0],
                  [9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))],
                  [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
core_test.py 文件源码 项目:meterstick 作者: google 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testRelativeToJackknifeSingleComparisonBaselineFirst(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([1], name="Y")
    correct = pd.DataFrame(
        np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
core_test.py 文件源码 项目:meterstick 作者: google 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testRelativeToJackknifeSingleComparisonBaselineSecond(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 1)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([0], name="Y")
    correct = pd.DataFrame(
        np.array([[-9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
core_test.py 文件源码 项目:meterstick 作者: google 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testRelativeToSplitJackknife(self):
    data = pd.DataFrame(
        {"X": [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8],
         "Y": [1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3],
         "Z": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Z", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).split_by("Y").relative_to(
        comparison).with_standard_errors(se_method).calculate(metric).run()

    rowindex = pd.MultiIndex(
        levels=[[1, 2, 3], [1]],
        labels=[[0, 1, 2], [0, 0, 0]],
        names=["Y", "Z"])
    correct = pd.DataFrame(
        np.array([[-3.0, np.sqrt(5 * np.var([0, -1, -2, -3, -4, -5]))],
                  [-3.0, np.sqrt(5 * np.var([3, 2, 1, -8, -7, -6]))],
                  [-3.0, np.sqrt(5 * np.var([6, 5, 4, -11, -10, -9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct))
test_nanfunctions.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0)
mainHmmGeneralizeClf.py 文件源码 项目:AirTicketPredicting 作者: junlulocky 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def mainHmmGeneralClf():
    isTrain = 1 # 1 for train, 0 for test
    isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise

    performance = 0
    normalizedPerformance = 0
    clf = ClassificationHmmGeneralize(isTrain)

    normPerforms = []
    for i in range(12):
        print "Route: {}".format(i)
        [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i])
        normPerforms.append(normaPefor)
        performance += perfor
        normalizedPerformance += normaPefor

    performance = round(performance/8, 2)
    normalizedPerformance = round(normalizedPerformance/8, 2)


    print "\nAverage Performance: {}%".format(performance)
    print "Average Normalized Performance: {}%".format(normalizedPerformance)
    print "Normalized Performance Variance: {}".format(np.var(normPerforms))
mainUniformGeneralize.py 文件源码 项目:AirTicketPredicting 作者: junlulocky 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def mainUniformGeneralClf():
    isTrain = 1 # 1 for train, 0 for test
    isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise

    performance = 0
    normalizedPerformance = 0
    clf = ClassificationUniformGeneralize(isTrain)
    print clf.X_general.shape

    normPerforms = []
    for i in range(12):
        print "Route: {}".format(i)
        [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i])
        normPerforms.append(normaPefor)
        performance += perfor
        normalizedPerformance += normaPefor

    performance = round(performance/8, 2)
    normalizedPerformance = round(normalizedPerformance/8, 2)


    print "\nAverage Performance: {}%".format(performance)
    print "Average Normalized Performance: {}%".format(normalizedPerformance)
    print "Normalized Performance Variance: {}".format(np.var(normPerforms))
pylspm.py 文件源码 项目:pylspm 作者: lseman 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def vif(self):
        vif = []
        totalmanifests = range(len(self.data_.columns))
        for i in range(len(totalmanifests)):
            independent = [x for j, x in enumerate(totalmanifests) if j != i]
            coef, resid = np.linalg.lstsq(
                self.data_.ix[:, independent], self.data_.ix[:, i])[:2]

            r2 = 1 - resid / \
                (self.data_.ix[:, i].size * self.data_.ix[:, i].var())

            vif.append(1 / (1 - r2))

        vif = pd.DataFrame(vif, index=self.manifests)
        return vif
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def explained_variance_1d(ypred,y):
    """
    Var[ypred - y] / var[y]. 
    https://www.quora.com/What-is-the-meaning-proportion-of-variance-explained-in-linear-regression
    """
    assert y.ndim == 1 and ypred.ndim == 1    
    vary = np.var(y)
    return np.nan if vary==0 else 1 - np.var(y-ypred)/vary
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def gauss_prob(mu, logstd, x):
    std = tf.exp(logstd)
    var = tf.square(std)
    gp = tf.exp(-(x - mu)/(2*var)) / ((2*np.pi)**.5 * std)
    return  tf.reduce_prod(gp, [1])
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def gauss_log_prob(mu, logstd, x):
    var = tf.exp(2*logstd)
    gp = -tf.square(x - mu)/(2*var) - .5*tf.log(tf.constant(2*np.pi)) - logstd
    return  tf.reduce_sum(gp, [1])
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def var(x, axis=None, keepdims=False):
    meanx = mean(x, axis=axis, keepdims=keepdims)
    return mean(tf.square(x - meanx), axis=axis, keepdims=keepdims)
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def std(x, axis=None, keepdims=False):
    return tf.sqrt(var(x, axis=axis, keepdims=keepdims))
tf_util.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def minimize_and_clip(optimizer, objective, var_list, clip_val=10):
    """Minimized `objective` using `optimizer` w.r.t. variables in
    `var_list` while ensure the norm of the gradients for each
    variable is clipped to `clip_val`
    """
    gradients = optimizer.compute_gradients(objective, var_list=var_list)
    for i, (grad, var) in enumerate(gradients):
        if grad is not None:
            gradients[i] = (tf.clip_by_norm(grad, clip_val), var)
    return optimizer.apply_gradients(gradients)
test_stats.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_output_shape(self):
        """ Test that the axis parameter is handled correctly """
        stream = [np.random.random((16, 7, 3)) for _ in range(5)]
        stack = np.stack(stream, axis = -1)

        for axis in (0, 1, 2, None):
            with self.subTest('axis = {}'.format(axis)):
                from_numpy = np.var(stack, axis = axis)
                from_ivar = last(ivar(stream, axis = axis))
                self.assertSequenceEqual(from_numpy.shape, from_ivar.shape)
                self.assertTrue(np.allclose(from_ivar, from_numpy))
test_stats.py 文件源码 项目:npstreams 作者: LaurentRDC 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_ddof(self):
        """ Test that the ddof parameter is equivalent to numpy's """
        stream = [np.random.random((16, 7, 3)) for _ in range(10)]
        stack = np.stack(stream, axis = -1)

        with catch_warnings():
            simplefilter('ignore')
            for axis in (0, 1, 2, None):
                for ddof in range(4):
                    with self.subTest('axis = {}, ddof = {}'.format(axis, ddof)):
                        from_numpy = np.var(stack, axis = axis, ddof = ddof)
                        from_ivar = last(ivar(stream, axis = axis, ddof = ddof))
                        self.assertSequenceEqual(from_numpy.shape, from_ivar.shape)
                        self.assertTrue(np.allclose(from_ivar, from_numpy))
stats.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def summarize_bootstrapped_top_n(top_n_boot):
    top_n_bcs_mean = np.mean(top_n_boot)
    top_n_bcs_sd = np.std(top_n_boot)
    top_n_bcs_var = np.var(top_n_boot)
    result = {}
    result['filtered_bcs_var'] = top_n_bcs_var
    result['filtered_bcs_cv'] = tk_stats.robust_divide(top_n_bcs_sd, top_n_bcs_mean)
    result['filtered_bcs_lb'] = round(scipy.stats.norm.ppf(0.025, top_n_bcs_mean, top_n_bcs_sd))
    result['filtered_bcs_ub'] = round(scipy.stats.norm.ppf(0.975, top_n_bcs_mean, top_n_bcs_sd))
    result['filtered_bcs'] = round(top_n_bcs_mean)
    return result
evaluation.py 文件源码 项目:a-nice-mc 作者: ermongroup 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def auto_correlation_time(x, s, mu, var):
    b, t, d = x.shape
    act_ = np.zeros([d])
    for i in range(0, b):
        y = x[i] - mu
        p, n = y[:-s], y[s:]
        act_ += np.mean(p * n, axis=0) / var
    act_ = act_ / b
    return act_
evaluation.py 文件源码 项目:a-nice-mc 作者: ermongroup 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def gelman_rubin_diagnostic(x, logger, mu=None):
    m, n = x.shape[0], x.shape[1]
    theta = np.mean(x, axis=1)
    sigma = np.var(x, axis=1)
    # theta_m = np.mean(theta, axis=0)
    theta_m = mu if mu else np.mean(theta, axis=0)
    b = float(n) / float(m-1) * np.sum((theta - theta_m) ** 2)
    w = 1. / float(m) * np.sum(sigma, axis=0)
    v = float(n-1) / float(n) * w + float(m+1) / float(m * n) * b
    r_hat = np.sqrt(v / w)
    logger.info('R: max [%f] min [%f]' % (np.max(r_hat), np.min(r_hat)))
    return r_hat


问题


面经


文章

微信
公众号

扫码关注公众号