python类int8()的实例源码

test_multiarray.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_padded_struct_array(self):
        dt1 = np.dtype(
                [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')],
                align=True)
        x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1)
        self._check_roundtrip(x1)

        dt2 = np.dtype(
                [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')],
                align=True)
        x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2)
        self._check_roundtrip(x2)

        dt3 = np.dtype(
                [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
                    ('e', 'b'), ('sub', np.dtype('b,i', align=True))])
        x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3)
        self._check_roundtrip(x3)
test_function_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
                      np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)

            tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
            assert_array_equal(np.cumsum(a, axis=0), tgt)

            tgt = np.array(
                [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
            assert_array_equal(np.cumsum(a2, axis=0), tgt)

            tgt = np.array(
                [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
            assert_array_equal(np.cumsum(a2, axis=1), tgt)
test_twodim_base.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_dtypes(self):
        c = array([11, -12, 13], dtype=np.int8)
        v = vander(c)
        expected = np.array([[121, 11, 1],
                             [144, -12, 1],
                             [169, 13, 1]])
        yield (assert_array_equal, v, expected)

        c = array([1.0+1j, 1.0-1j])
        v = vander(c, N=3)
        expected = np.array([[2j, 1+1j, 1],
                             [-2j, 1-1j, 1]])
        # The data is floating point, but the values are small integers,
        # so assert_array_equal *should* be safe here (rather than, say,
        # assert_array_almost_equal).
        yield (assert_array_equal, v, expected)
test_random.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_shuffle(self):
        # Test lists, arrays (of various dtypes), and multidimensional versions
        # of both, c-contiguous or not:
        for conv in [lambda x: np.array([]),
                     lambda x: x,
                     lambda x: np.asarray(x).astype(np.int8),
                     lambda x: np.asarray(x).astype(np.float32),
                     lambda x: np.asarray(x).astype(np.complex64),
                     lambda x: np.asarray(x).astype(object),
                     lambda x: [(i, i) for i in x],
                     lambda x: np.asarray([[i, i] for i in x]),
                     lambda x: np.vstack([x, x]).T,
                     # gh-4270
                     lambda x: np.asarray([(i, i) for i in x],
                                          [("a", object, 1),
                                           ("b", np.int32, 1)])]:
            np.random.seed(self.seed)
            alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
            np.random.shuffle(alist)
            actual = alist
            desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
            np.testing.assert_array_equal(actual, desired)
tetris_agent.py 文件源码 项目:reinforcement_learning 作者: andreweskeclarke 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, model_name, saved_model_file=None, max_training_batches=1, watch=False):
        self.saved_model_file = saved_model_file
        if saved_model_file is not None:
            print('Loading saved model from %s' % saved_model_file)
            self.model = self.load_model(saved_model_file)
        else:
            self.init_model(model_name)
        # Treat as a ring buffer
        self.current_pos = 0
        self.max_pos = 0
        self.states_t0 = np.zeros((BUFFER_SIZE,1,BOARD_HEIGHT,BOARD_WIDTH), dtype=np.int8)
        self.actions = np.zeros([BUFFER_SIZE], dtype=np.int8)
        self.states_t1 = np.zeros((BUFFER_SIZE,1,BOARD_HEIGHT,BOARD_WIDTH), dtype=np.int8)
        self.rewards = np.zeros([BUFFER_SIZE], dtype=np.float32)
        self.n_games = 0
        self.state_printer = WebSocketPrinter()
        self.current_game_length = 0
        self.current_episode_length = 0
        self.n_games = 0
        self.max_training_batches = max_training_batches
        self.n_training_batches = 0
        self.model_name = model_name
test_integration.py 文件源码 项目:pymapd 作者: mapd 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_load_columnar_pandas_all(self, con, all_types_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_": np.array([0, 1], dtype=np.int8),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table_columnar(all_types_table, data, preserve_index=False)
test_integration.py 文件源码 项目:pymapd 作者: mapd 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_load_table_creates(self, con, not_a_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_cast": np.array([0, 1], dtype=np.int8),
            "smallint_": np.array([0, 1], dtype=np.int16),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table(not_a_table, data, create=True)
IOMethods.py 文件源码 项目:aes_wimp 作者: Js-Mim 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def wavWrite(y, fs, nbits, audioFile):
        """ Write samples to WAV file
        Args:
            samples: (ndarray / 2D ndarray) (floating point) sample vector
                        mono: DIM: nSamples
                        stereo: DIM: nSamples x nChannels

            fs:     (int) Sample rate in Hz
            nBits:  (int) Number of bits
            fnWAV:  (string) WAV file name to write
        """
        if nbits == 8:
            intsamples = (y+1.0) * AudioIO.normFact['int' + str(nbits)]
            fX = np.int8(intsamples)
        elif nbits == 16:
            intsamples = y * AudioIO.normFact['int' + str(nbits)]
            fX = np.int16(intsamples)
        elif nbits > 16:
            fX = y

        write(audioFile, fs, fX)
test_execution.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def one_hot_comparison(hot_axes, axes, C):
    """
    TODO.

    Arguments:
      hot_axes: TODO
      axes: TODO
    """
    u = rng.random_integers(0, C.length - 1, axes, dtype=np.int8)
    u_p = ng.placeholder(axes, dtype=u.dtype)
    v = np.zeros(hot_axes.lengths, dtype=np.float32)
    udxiter = np.nditer(u, flags=['multi_index'])
    for uiter in udxiter:
        vindex = [int(uiter)]
        vindex.extend(udxiter.multi_index)
        v[tuple(vindex)] = 1

    with executor(ng.one_hot(u_p, axis=C), u_p) as ex:
        v_t = ex(u)
        ng.testing.assert_allclose(v_t, v)
sigproc.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def interpret_header(self):
        """redefine variables from header dictionary"""
        self.nifs = self.header['nifs']
        self.nchans = self.header['nchans']
        self.nbits = self.header['nbits']
        signed = 'signed' in self.header and self.header['signed'] is True
        if self.nbits >= 8:
            if signed:
                self.dtype = {8: np.int8,
                              16: np.int16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
            else:
                self.dtype = {8: np.uint8,
                              16: np.uint16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
        else:
            self.dtype = np.int8 if signed else np.uint8
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
test_linalg.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def run_test_matmul_aa_ci8_shape(self, shape, transpose=False):
        # **TODO: This currently never triggers the transpose path in the backend
        shape_complex = shape[:-1] + (shape[-1] * 2,)
        # Note: The xGPU-like correlation kernel does not support input values of -128 (only [-127:127])
        a8 = ((np.random.random(size=shape_complex) * 2 - 1) * 127).astype(np.int8)
        a_gold = a8.astype(np.float32).view(np.complex64)
        if transpose:
            a_gold = H(a_gold)
        # Note: np.matmul seems to be slow and inaccurate when there are batch dims
        c_gold = np.matmul(a_gold, H(a_gold))
        triu = np.triu_indices(shape[-2] if not transpose else shape[-1], 1)
        c_gold[..., triu[0], triu[1]] = 0
        a = a8.view(bf.DataType.ci8)
        a = bf.asarray(a, space='cuda')
        if transpose:
            a = H(a)
        c = bf.zeros_like(c_gold, space='cuda')
        self.linalg.matmul(1, a, None, 0, c)
        c = c.copy('system')
        np.testing.assert_allclose(c, c_gold, RTOL, ATOL)
test_linalg.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def run_benchmark_matmul_aa_correlator_kernel(self, ntime, nstand, nchan):
        x_shape = (ntime, nchan, nstand*2)
        perm = [1,0,2]
        x8 = ((np.random.random(size=x_shape+(2,))*2-1)*127).astype(np.int8)
        x = x8.astype(np.float32).view(np.complex64).reshape(x_shape)
        x = x.transpose(perm)
        b_gold = np.matmul(H(x[:,[0],:]), x[:,[0],:])
        triu = np.triu_indices(x_shape[-1], 1)
        b_gold[..., triu[0], triu[1]] = 0
        x = x8.view(bf.DataType.ci8).reshape(x_shape)
        x = bf.asarray(x, space='cuda')
        x = x.transpose(perm)
        b = bf.zeros_like(b_gold, space='cuda')
        bf.device.stream_synchronize();
        t0 = time.time()
        nrep = 200
        for _ in xrange(nrep):
            self.linalg.matmul(1, None, x, 0, b)
        bf.device.stream_synchronize();
        dt = time.time() - t0
        nflop = nrep * nchan * ntime * nstand*(nstand+1)/2 * 2*2 * 8
        print nstand, '\t', nflop / dt / 1e9, 'GFLOP/s'
        print '\t\t', nrep*ntime*nchan / dt / 1e6, 'MHz'
model.py 文件源码 项目:epfl-semester-project-biaxialnn 作者: onanypoint 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def perform(self, node, inputs_storage, output_storage):
        """Peform the transformation from output to feature space.

        Defines the Python implementation of the op. It is in charge of doing 
        the processing to go from output space (statematrix) to feature space.

        Parameters
        ----------
        node : 
            Reference to an Apply node which was previously obtained via 
            the Op‘s make_node() method.
        inputs_storage : array_like
            A list of references to data which can be operated on using 
            non-symbolic statements
        output_storage : array_like
            A list of storage cells where the output is to be stored
        """
        state, time = inputs_storage
        output_storage[0][0] = np.array(self.d.f.note_state_single_to_input_form(state, time), dtype='int8')
test_utils.py 文件源码 项目:MuGo 作者: brilee 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_board(string):
    reverse_map = {
        'X': go.BLACK,
        'O': go.WHITE,
        '.': go.EMPTY,
        '#': go.FILL,
        '*': go.KO,
        '?': go.UNKNOWN
    }

    string = re.sub(r'[^XO\.#]+', '', string)
    assert len(string) == go.N ** 2, "Board to load didn't have right dimensions"
    board = np.zeros([go.N, go.N], dtype=np.int8)
    for i, char in enumerate(string):
        np.ravel(board)[i] = reverse_map[char]
    return board
cube.py 文件源码 项目:pytrip 作者: pytrip 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def set_data_type(self, type):
        """ Sets the data type for the TRiP98 header files.

        :param numpy.type type: numpy type, e.g. np.uint16
        """
        if type is np.int8 or type is np.uint8:
            self.data_type = "integer"
            self.num_bytes = 1
        elif type is np.int16 or type is np.uint16:
            self.data_type = "integer"
            self.num_bytes = 2
        elif type is np.int32 or type is np.uint32:
            self.data_type = "integer"
            self.num_bytes = 4
        elif type is np.float:
            self.data_type = "float"
            self.num_bytes = 4
        elif type is np.double:
            self.data_type = "double"
            self.num_bytes = 8

    # ######################  WRITING DICOM FILES #######################################
converter.py 文件源码 项目:ConferenceScheduler 作者: PyconUK 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def schedule_to_array(schedule, events, slots):
    """Convert a schedule from schedule to array form

    Parameters
    ----------
    schedule : list or tuple
        of instances of :py:class:`resources.ScheduledItem`
    events : list or tuple
        of :py:class:`resources.Event` instances
    slots : list or tuple
        of :py:class:`resources.Slot` instances

    Returns
    -------
    np.array
        An E by S array (X) where E is the number of events and S the
        number of slots. Xij is 1 if event i is scheduled in slot j and
        zero otherwise
    """
    array = np.zeros((len(events), len(slots)), dtype=np.int8)
    for item in schedule:
        array[events.index(item.event), slots.index(item.slot)] = 1
    return array
format.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def export_rows(schema, data):
    """Export multiple rows of internal data to json format.

    Args:
        schema: A schema dict as returned by load_schema().
        data: An [N, R]-shaped numpy array of ragged data, where N is the
            number of rows and R = schema['ragged_index'][-1].

    Returns:
        A N-long list of sparse dicts mapping feature names to json values,
        where N is the number of rows.
    """
    logger.debug('Exporting {:d} rows', data.shape[0])
    assert data.dtype == np.int8
    assert len(data.shape) == 2
    ragged_index = schema['ragged_index']
    assert data.shape[1] == ragged_index[-1]
    feature_names = schema['feature_names']
    feature_types = schema['feature_types']
    categorical_values = schema['categorical_values']
    ordinal_ranges = schema['ordinal_ranges']

    rows = [{} for _ in range(data.shape[0])]
    for external_row, internal_row in zip(rows, data):
        for v, name in enumerate(feature_names):
            beg, end = ragged_index[v:v + 2]
            internal_cell = internal_row[beg:end]
            if np.all(internal_cell == 0):
                continue
            typename = feature_types[name]
            if typename == CATEGORICAL:
                assert internal_cell.sum() == 1, internal_cell
                value = categorical_values[name][internal_cell.argmax()]
            elif typename == ORDINAL:
                min_max = ordinal_ranges[name]
                assert internal_cell.sum() == min_max[1] - min_max[0]
                value = internal_cell[0] + min_max[0]
            else:
                raise ValueError(typename)
            external_row[name] = value
    return rows
serving_test.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def validate_sample_shape(table, server):
    # Sample many different counts patterns.
    V = table.num_cols
    N = table.num_rows
    factors = [[0, 1, 2]] * V
    for counts in itertools.product(*factors):
        counts = np.array(counts, dtype=np.int8)
        for n in range(N):
            row = table.data[n, :]
            samples = server.sample(N, counts, row)
            assert samples.shape == (N, row.shape[0])
            assert samples.dtype == row.dtype
            for v in range(V):
                beg, end = table.ragged_index[v:v + 2]
                assert np.all(samples[:, beg:end].sum(axis=1) == counts[v])


问题


面经


文章

微信
公众号

扫码关注公众号