python类int16()的实例源码

test_integration.py 文件源码 项目:pymapd 作者: mapd 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_load_table_creates(self, con, not_a_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_cast": np.array([0, 1], dtype=np.int8),
            "smallint_": np.array([0, 1], dtype=np.int16),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table(not_a_table, data, create=True)
IOMethods.py 文件源码 项目:aes_wimp 作者: Js-Mim 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def wavWrite(y, fs, nbits, audioFile):
        """ Write samples to WAV file
        Args:
            samples: (ndarray / 2D ndarray) (floating point) sample vector
                        mono: DIM: nSamples
                        stereo: DIM: nSamples x nChannels

            fs:     (int) Sample rate in Hz
            nBits:  (int) Number of bits
            fnWAV:  (string) WAV file name to write
        """
        if nbits == 8:
            intsamples = (y+1.0) * AudioIO.normFact['int' + str(nbits)]
            fX = np.int8(intsamples)
        elif nbits == 16:
            intsamples = y * AudioIO.normFact['int' + str(nbits)]
            fX = np.int16(intsamples)
        elif nbits > 16:
            fX = y

        write(audioFile, fs, fX)
sigproc.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def interpret_header(self):
        """redefine variables from header dictionary"""
        self.nifs = self.header['nifs']
        self.nchans = self.header['nchans']
        self.nbits = self.header['nbits']
        signed = 'signed' in self.header and self.header['signed'] is True
        if self.nbits >= 8:
            if signed:
                self.dtype = {8: np.int8,
                              16: np.int16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
            else:
                self.dtype = {8: np.uint8,
                              16: np.uint16,
                              32: np.float32,
                              64: np.float64}[self.nbits]
        else:
            self.dtype = np.int8 if signed else np.uint8
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype))
dtype.py 文件源码 项目:bifrost 作者: ledatelescope 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype))
getVIref.py 文件源码 项目:Global_GPP_VPM_NCEP_C3C4 作者: zhangyaonju 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def smooth(tile):
    #first use this function to get mean and save it in an array
    temp = import_all_year_data(tile)
    ####after get the mean value for all doy, I will run a bise gapfill first
    print temp.size
    ##when using the single processing
    #inputVI = pd.DataFrame(temp)
    #VIsmoothed = inputVI.apply(VIsmooth, axis=0)
    #VIsmoothed = VIsmoothed.as_matrix()
    #VIsmoothed = parallelize_dataframe(temp)
    ##when using the multiprocessing
    VIsmoothed = dataframeapply(temp)
    VIsmoothed = VIsmoothed.reshape(VIsmoothed.size/2400/2400, 2400, 2400)
    TILEdir = os.path.join(dirref, tile)
    if not os.path.exists(TILEdir):
        os.makedirs(TILEdir)
    export_array (Rasters=np.int16(VIsmoothed), directory=TILEdir, \
        prod='EVI.BISE.SG', tile=tile, index=range(1, 369, 8))
    temp = None
    inputVI = None
    VIsmoothed = None
APS2Pattern.py 文件源码 项目:QGL 作者: BBN-Q 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def update_wf_library(filename, pulses, offsets):
    """
    Update a H5 waveform library in place give an iterable of (pulseName, pulse)
    tuples and offsets into the waveform library.
    """
    assert USE_PHASE_OFFSET_INSTRUCTION == False
    #load the h5 file
    with h5py.File(filename) as FID:
        for label, pulse in pulses.items():
            #create a new waveform
            if pulse.isTimeAmp:
                shape = np.repeat(pulse.amp * np.exp(1j * pulse.phase), 4)
            else:
                shape = pulse.amp * np.exp(1j * pulse.phase) * pulse.shape
            try:
                length = offsets[label][1]
            except KeyError:
                print("\t{} not found in offsets so skipping".format(pulse))
                continue
            for offset in offsets[label][0]:
                print("\tUpdating {} at offset {}".format(pulse, offset))
                FID['/chan_1/waveforms'][offset:offset + length] = np.int16(
                    MAX_WAVEFORM_VALUE * shape.real)
                FID['/chan_2/waveforms'][offset:offset + length] = np.int16(
                    MAX_WAVEFORM_VALUE * shape.imag)
TekPattern.py 文件源码 项目:QGL 作者: BBN-Q 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def write_field(FID, fieldName, data, dataType):
    typeSizes = {'int16': 2, 'int32': 4, 'double': 8, 'uint128': 16}
    formatChars = {'int16': '<h', 'int32': '<i', 'double': '<d'}

    if dataType == 'char':
        dataSize = len(data) + 1
        data = data + chr(0)
    else:
        dataSize = typeSizes[dataType]

    FID.write(struct.pack('<II', len(fieldName) + 1, dataSize))
    FID.write(fieldName + chr(0))
    if dataType == 'char':
        FID.write(data)
    elif dataType == 'uint128':
        #struct doesn't support uint128 so write two 64bits
        #there are smarter ways but we really only need this for the fake timestamp
        FID.write(struct.pack('<QQ', 0, data))
    else:
        FID.write(struct.pack(formatChars[dataType], data))
TekPattern.py 文件源码 项目:QGL 作者: BBN-Q 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def write_waveform(FID, WFname, WFnumber, data):
    '''
    Helper function to write a waveform
    '''
    numString = str(WFnumber)

    write_field(FID, 'WAVEFORM_NAME_' + numString, WFname, 'char')

    #Set integer format
    write_field(FID, 'WAVEFORM_TYPE_' + numString, 1, 'int16')

    write_field(FID, 'WAVEFORM_LENGTH_' + numString, data.size, 'int32')

    write_field(FID, 'WAVEFORM_TIMESTAMP_' + numString, 0, 'uint128')
    tmpString = 'WAVEFORM_DATA_' + numString + chr(0)
    dataSize = 2 * data.size
    FID.write(struct.pack('<II', len(tmpString), dataSize))
    FID.write(tmpString)
    FID.write(data.tostring())
ctx.py 文件源码 项目:pytrip 作者: pytrip 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def read_dicom(self, dcm):
        """ Imports CT-images from Dicom object.

        :param Dicom dcm: a Dicom object
        """
        if "images" not in dcm:
            raise InputError("Data doesn't contain ct data")
        if not self.header_set:
            self._set_header_from_dicom(dcm)

        self.cube = np.zeros((self.dimz, self.dimy, self.dimx), dtype=np.int16)
        intersect = float(dcm["images"][0].RescaleIntercept)
        slope = float(dcm["images"][0].RescaleSlope)

        for i in range(len(dcm["images"])):
            data = np.array(dcm["images"][i].pixel_array) * slope + intersect
            self.cube[i][:][:] = data
        if self.slice_pos[1] < self.slice_pos[0]:
            self.slice_pos.reverse()
            self.zoffset = self.slice_pos[0]
            self.cube = self.cube[::-1]
cube.py 文件源码 项目:pytrip 作者: pytrip 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def set_data_type(self, type):
        """ Sets the data type for the TRiP98 header files.

        :param numpy.type type: numpy type, e.g. np.uint16
        """
        if type is np.int8 or type is np.uint8:
            self.data_type = "integer"
            self.num_bytes = 1
        elif type is np.int16 or type is np.uint16:
            self.data_type = "integer"
            self.num_bytes = 2
        elif type is np.int32 or type is np.uint32:
            self.data_type = "integer"
            self.num_bytes = 4
        elif type is np.float:
            self.data_type = "float"
            self.num_bytes = 4
        elif type is np.double:
            self.data_type = "double"
            self.num_bytes = 8

    # ######################  WRITING DICOM FILES #######################################
calculate_accuracy_t.py 文件源码 项目:piecewisecrf 作者: Vaan5 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_data(predictions_file, labels_file):
    '''

    Loads prediction and label data into numpy arrays

    Parameters
    ----------
    predictions_file: str
        Path to the prediction file

    labels_file: str
        Path to the label file

    Returns
    -------
    ret_val: tuple
        labels array, predictions array


    '''
    labels = io.load_nparray_from_bin_file(labels_file, np.uint8)
    predictions = io.load_nparray_from_bin_file(predictions_file, np.int16)

    return labels, predictions
dataset.py 文件源码 项目:gan_practice 作者: handspeaker 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def render_fonts_image(x, path, img_per_row, unit_scale=True):
    if unit_scale:
        # scale 0-1 matrix back to gray scale bitmaps
        bitmaps = (x * 255.).astype(dtype=np.int16) % 256
    else:
        bitmaps = x
    num_imgs, h, w = x.shape
    width = img_per_row * w
    height = int(np.ceil(float(num_imgs) / img_per_row)) * h
    canvas = np.zeros(shape=(height, width), dtype=np.int16)
    # make the canvas all white
    canvas.fill(0)
    for idx, bm in enumerate(bitmaps):
        x = h * int(idx / img_per_row)
        y = w * int(idx % img_per_row)
        canvas[x: x + h, y: y + w] = bm
    scipy.misc.toimage(canvas).save(path)
    return path
mxnet_backend.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _typename(t):
    if t == np.float16:
        return 'float16'
    elif t == np.float32:
        return 'float32'
    elif t == np.float64:
        return 'float64'
    elif t == np.uint8:
        return 'uint8'
    elif t == np.uint16:
        return 'uint16'
    elif t == np.int16:
        return 'int16'
    elif t == np.int32:
        return 'int32'
    elif t == np.int64:
        return 'int64'
    else:
        raise TypeError('unknown type')
json.py 文件源码 项目:incubator-airflow-old 作者: apache 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj)
graph.py 文件源码 项目:tensorboard-chainer 作者: neka-nat 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def convert_dtype(dtype):
    if dtype == np.float32:
        return dt.DT_FLOAT
    elif dtype == np.float64:
        return dt.DT_DOUBLE
    elif dtype == np.int32:
        return dt.DT_INT32
    elif dtype == np.uint8:
        return dt.DT_UINT8
    elif dtype == np.int16:
        return dt.DT_INT16
    elif dtype == np.int8:
        return dt.DT_INT8
    elif dtype == np.dtype('S1'):
        return dt.DT_STRING
    else:
        raise ValueError('Unsupported type.')
simple-generative-model.py 文件源码 项目:keras-wavenet 作者: usernaamee 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_audio_from_model(model, sr, duration, seed_audio):
    print 'Generating audio...'
    new_audio = np.zeros((sr * duration))
    curr_sample_idx = 0
    while curr_sample_idx < new_audio.shape[0]:
        distribution = np.array(model.predict(seed_audio.reshape(1,
                                                                 frame_size, 1)
                                             ), dtype=float).reshape(256)
        distribution /= distribution.sum().astype(float)
        predicted_val = np.random.choice(range(256), p=distribution)
        ampl_val_8 = ((((predicted_val) / 255.0) - 0.5) * 2.0)
        ampl_val_16 = (np.sign(ampl_val_8) * (1/256.0) * ((1 + 256.0)**abs(
            ampl_val_8) - 1)) * 2**15
        new_audio[curr_sample_idx] = ampl_val_16
        seed_audio[-1] = ampl_val_16
        seed_audio[:-1] = seed_audio[1:]
        pc_str = str(round(100*curr_sample_idx/float(new_audio.shape[0]), 2))
        sys.stdout.write('Percent complete: ' + pc_str + '\r')
        sys.stdout.flush()
        curr_sample_idx += 1
    print 'Audio generated.'
    return new_audio.astype(np.int16)
01_preprocess.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def to_volume(slices):
    """Creates ndarray volume in Hounsfield units (HU) from array of pydicom slices.
    """
    volume = np.stack([s.pixel_array for s in slices])
    volume = volume.astype(np.int16)

    # Set outside-of-scan pixels to 0
    # The intercept is usually -1024, so air is approximately 0
    volume[volume == -2000] = 0

    # Convert to Hounsfield units (HU)
    for n in range(len(slices)):
        intercept = slices[n].RescaleIntercept
        slope = slices[n].RescaleSlope
        if slope != 1:
            volume[n] = slope * volume[n].astype(np.float64)
            volume[n] = volume[n].astype(np.int16)
        volume[n] += np.int16(intercept)

    volume = np.array(volume, dtype=np.int16)
    spacing = tuple(map(float, ([slices[0].SliceThickness] + slices[0].PixelSpacing)))
    return volume, spacing
01_preprocess.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def to_volume(slices):
    """Creates ndarray volume in Hounsfield units (HU) from array of pydicom slices.
    """
    volume = np.stack([s.pixel_array for s in slices])
    volume = volume.astype(np.int16)

    # Set outside-of-scan pixels to 0
    # The intercept is usually -1024, so air is approximately 0
    volume[volume == -2000] = 0

    # Convert to Hounsfield units (HU)
    for n in range(len(slices)):
        intercept = slices[n].RescaleIntercept
        slope = slices[n].RescaleSlope
        if slope != 1:
            volume[n] = slope * volume[n].astype(np.float64)
            volume[n] = volume[n].astype(np.int16)
        volume[n] += np.int16(intercept)

    volume = np.array(volume, dtype=np.int16)
    spacing = tuple(map(float, ([slices[0].SliceThickness] + slices[0].PixelSpacing)))
    return volume, spacing
test_grids.py 文件源码 项目:rastercube 作者: terrai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_cell_indices_in_tile(self):
        """
        Test get_cell_indices_in_tile by filling an int array for a tile,
        using the indices returned by cell_indices_in_tile for each cell
        in the tile. The array should be fully filled with 1 at the end
        """
        h, v = (20, 11)
        grid = MODISGrid()
        tile_data = np.zeros(
            (MODISGrid.MODIS_tile_height, MODISGrid.MODIS_tile_width),
            dtype=np.int16)
        cells = grid.get_cells_for_tile(h, v)
        for cell in cells:
            i_range, j_range = grid.get_cell_indices_in_tile(cell, h, v)
            tile_data[i_range[0]:i_range[1], j_range[0]:j_range[1]] += 1
        # If tile_data contains some zeros, this means the tile is not
        # fully covered by the cells. If it contains values > 1, this means
        # than more than one cell covers a given tile pixel
        assert_array_equal(tile_data, np.ones_like(tile_data))


问题


面经


文章

微信
公众号

扫码关注公众号