python类full()的实例源码

note_rnn_loader.py 文件源码 项目:magenta 作者: tensorflow 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_next_note_from_note(self, note):
    """Given a note, uses the model to predict the most probable next note.

    Args:
      note: A one-hot encoding of the note.
    Returns:
      Next note in the same format.
    """
    with self.graph.as_default():
      with tf.variable_scope(self.scope, reuse=True):
        singleton_lengths = np.full(self.batch_size, 1, dtype=int)

        input_batch = np.reshape(note,
                                 (self.batch_size, 1, rl_tuner_ops.NUM_CLASSES))

        softmax, self.state_value = self.session.run(
            [self.softmax, self.state_tensor],
            {self.melody_sequence: input_batch,
             self.initial_state: self.state_value,
             self.lengths: singleton_lengths})

        return self.get_note_from_softmax(softmax)
finite_difference.py 文件源码 项目:house-of-enlightenment 作者: house-of-enlightenment 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def set_pixels(self, pixels):

        hsv = np.full((self.X_MAX, self.Y_MAX, 3), 0xFF, dtype=np.uint8)
        hsv[:, :, self.wave_type] = self.pixels[2] / 0xFFFF * 0xFF
        if self.wave_type == self.VALUE:
            hsv[:, :, 1] = 0
        if self.darken_mids:
            hsv[:, :, 2] = np.abs(self.pixels[2] - (0xFFFF >> 1)) / 0xFFFF * 0xFF

        rgb = color_utils.hsv2rgb(hsv)
        pixels[:self.X_MAX, :self.Y_MAX] = rgb

        self.pixels.pop(0)

    ##
    # Calculate next frame of explicit finite difference wave
    #
dmrt_qca_shortrange.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def basic_check(self):
        # TODO Ghi: check the microstructure model is compatible.
        # if we want to be strict, only IndependentShpere should be valid, but in pratice any
        # model of sphere with a radius can make it!
        if not hasattr(self.layer.microstructure, "radius"):
            raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering")

    # The phase function is inherited from Rayleigh  // Don't remove the commented code
    #    def phase(self, m, mhu):

    # The ke function is inherited from Rayleigh  // Don't remove the commented code
    # def ke(self, mhu):
    #    return np.full(2*len(mhu), self.ks+self.ka)

    # The effective_permittivity is inherited from Rayleigh  // Don't remove the commented code
    # def effective_permittivity(self):
    #    return self._effective_permittivity
dmrt_shortrange.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def basic_check(self):
        # TODO Ghi: check the microstructure model is compatible.
        # if we want to be strict, only IndependentShpere should be valid, but in pratice any
        # model of sphere with a radius can make it!
        if not hasattr(self.layer.microstructure, "radius"):
            raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering")

    # The phase function is inherited from Rayleigh  // Don't remove the commented code
    #    def phase(self, m, mhu):

    # The ke function is inherited from Rayleigh  // Don't remove the commented code
    # def ke(self, mhu):
    #    return np.full(2*len(mhu), self.ks+self.ka)

    # The effective_permittivity is inherited from Rayleigh  // Don't remove the commented code
    # def effective_permittivity(self):
    #    return self._effective_permittivity
dmrt_qcacp_shortrange.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def basic_check(self):
        # TODO Ghi: check the microstructure model is compatible.
        # if we want to be strict, only IndependentShpere should be valid, but in pratice any
        # model of sphere with a radius can make it!
        if not hasattr(self.layer.microstructure, "radius"):
            raise SMRTError("Only microstructure_model which defined a `radius` can be used with Rayleigh scattering")

    # The phase function is inherited from Rayleigh  // Don't remove the commented code
    #    def phase(self, m, mhu):

    # The ke function is inherited from Rayleigh  // Don't remove the commented code
    # def ke(self, mhu):
    #    return np.full(2*len(mhu), self.ks+self.ka)

    # The effective_permittivity is inherited from Rayleigh  // Don't remove the commented code
    # def effective_permittivity(self):
    #    return self._effective_permittivity
test_comm_nodes.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_allreduce_hint(hetr_device, config):
    if hetr_device == 'gpu':
        if 'gpu' not in ngt.transformer_choices():
            pytest.skip("GPUTransformer not available")

    input = config['input']
    device_id = config['device_id']
    axis_A = ng.make_axis(length=4, name='axis_A')
    parallel_axis = ng.make_axis(name='axis_parallel', length=16)

    with ng.metadata(device=hetr_device,
                     device_id=device_id,
                     parallel=parallel_axis):
        var_A = ng.variable(axes=[axis_A], initial_value=UniformInit(1, 1))
        var_B = ng.variable(axes=[axis_A], initial_value=UniformInit(input, input))
        var_B.metadata['reduce_func'] = 'sum'
        var_B_mean = var_B / len(device_id)
        var_minus = (var_A - var_B_mean)

    with closing(ngt.make_transformer_factory('hetr', device=hetr_device)()) as hetr:
        out_comp = hetr.computation(var_minus)
        result = out_comp()
        np_result = np.full((axis_A.length), config['expected_result'], np.float32)
        np.testing.assert_array_equal(result, np_result)
test_lr.py 文件源码 项目:ngraph 作者: NervanaSystems 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_fixed_lr(iter_buf, max_iter, base_lr):
    # set up
    name = 'fixed'
    params = {'name': name,
              'max_iter': max_iter,
              'base_lr': base_lr}

    # execute
    naive_lr = np.full(max_iter, base_lr)
    lr_op = lr_policies[name]['obj'](params)(iter_buf)
    with ExecutorFactory() as ex:
        compute_lr = ex.executor(lr_op, iter_buf)
        ng_lr = [compute_lr(i).item(0) for i in range(max_iter)]

        # compare
        ng.testing.assert_allclose(ng_lr, naive_lr, atol=1e-4, rtol=1e-3)
utility.py 文件源码 项目:TemporalEncoding 作者: SpikeFrame 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def plot_spikepattern(spike_trains, sim_time):
    """Plot set of spike trains (spike pattern)"""
    plt.ioff()

    plt.figure()
    for i in xrange(len(spike_trains)):
        spike_times = spike_trains[i].value
        plt.plot(spike_times, np.full(len(spike_times), i,
                 dtype=np.int), 'k.')
    plt.xlim((0.0, sim_time))
    plt.ylim((0, len(spike_trains)))
    plt.xlabel('Time (ms)')
    plt.ylabel('Neuron index')
    plt.show()

    plt.ion()
utility.py 文件源码 项目:TemporalEncoding 作者: SpikeFrame 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_spiker(record, spike_trains_target, neuron_index=0):
    """Plot spikeraster and target timings for given neuron index"""
    plt.ioff()

    spike_trains = [np.array(i.spiketrains[neuron_index])
                    for i in record.segments]
    n_segments = record.size['segments']

    plt.figure()
    for i in xrange(len(spike_trains)):
        plt.plot(spike_trains[i], np.full(len(spike_trains[i]), i + 1,
                 dtype=np.int), 'k.')
    target_timings = spike_trains_target[neuron_index].value
    plt.plot(target_timings, np.full(len(target_timings), 1.025 * n_segments),
             'kx', markersize=8, markeredgewidth=2)
    plt.xlim((0., np.float(record.segments[0].t_stop)))
    plt.ylim((0, np.int(1.05 * n_segments)))
    plt.xlabel('Time (ms)')
    plt.ylabel('Trials')
    plt.title('Output neuron {}'.format(neuron_index))
    plt.show()

    plt.ion()
walkington.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, index):
        self.name = 'Walkington(tetrahedron, {})'.format(index)

        if index == 'p5':
            self.degree = 5
            self.weights = 6 * numpy.concatenate([
                numpy.full(4, 0.018781320953002641800),
                numpy.full(4, 0.012248840519393658257),
                numpy.full(6, 0.0070910034628469110730),
                ])
            self.bary = numpy.concatenate([
                _xi1(0.31088591926330060980),
                _xi1(0.092735250310891226402),
                _xi11(0.045503704125649649492),
                ])
            self.points = self.bary[:, 1:]
            return

        # Default: scheme from general simplex
        w = walkington.Walkington(3, index)
        self.weights = w.weights
        self.bary = w.bary
        self.points = w.points
        self.degree = w.degree
        return
stroud.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _gen5_3(n):
    '''Spherical product Lobatto formula.
    '''
    data = []
    s = sqrt(n+3)
    for k in range(1, n+1):
        rk = sqrt((k+2) * (n+3))
        Bk = fr(2**(k-n) * (n+1), (k+1) * (k+2) * (n+3))
        arr = [rk] + (n-k) * [s]
        data += [
            (Bk, pm_array0(n, arr, range(k-1, n)))
            ]
    B0 = 1 - sum([item[0]*len(item[1]) for item in data])
    data += [
        (B0, numpy.full((1, n), 0))
        ]
    return 5, data
rw.py 文件源码 项目:nanopores 作者: mitschabaude 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def setup_rw(params):
    pore = get_pore(**params)
    rw = RandomWalk(pore, **params)
    rw.add_wall_binding(t=params.t_bind, p=params.p_bind, eps=params.eps_bind)

    # define non-standard stopping criteria
    Tmax = params.Tmax
    Rmax = params.Rmax

    def success(self, r, z):
        return self.in_channel(r, z) & (z <= params.zstop)

    def fail(self, r, z):
        if self.t > Tmax:
            return np.full(r.shape, True, dtype=bool)
        toolong = (self.times[self.alive] + self.bind_times[self.alive]) > 5e6
        toofar = r**2 + z**2 > Rmax**2
        return toolong | toofar

    rw.set_stopping_criteria(success, fail)
    return rw

########### STREAMLINE PLOT  ###########
randomwalk.py 文件源码 项目:nanopores 作者: mitschabaude 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def move_ellipses(self, coll, cyl=False):
        xz = self.x[:, ::2] if not cyl else np.column_stack(
           [np.sqrt(np.sum(self.x[:, :2]**2, 1)), self.x[:, 2]])
        coll.set_offsets(xz)
        #inside = self.inside_wall()
        #margin = np.nonzero(self.alive)[0][self.inside_wall(2.)]
        colors = np.full((self.N,), "b", dtype=str)
        #colors[margin] = "r"
        colors[self.success] = "k"
        colors[self.fail] = "k"
        colors[self.alive & ~self.can_bind] = "r"
        #colors = [("r" if inside[i] else "g") if margin[i] else "b" for i in range(self.N)]
        coll.set_facecolors(colors)
        #y = self.x[:, 1]
        #d = 50.
        #sizes = self.params.rMolecule*(1. + y/d)
        #coll.set(widths=sizes, heights=sizes)
statistics.py 文件源码 项目:nanopores 作者: mitschabaude 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def sample_scalar(self, shape, a):
        AMAX = 30
        if a > AMAX:
            return np.random.poisson(a, shape)
        k = 1
        K = np.full(shape, k)
        s = a/np.expm1(a)
        S = s
        U = np.random.random(shape)
        new = S < U
        while np.any(new):
            k += 1
            K[new] = k
            s = s*a/float(k)
            S = S + s
            new = S < U
        return K
geopandas.py 文件源码 项目:geoviews 作者: ioam 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def values(cls, dataset, dimension, expanded, flat):
        dimension = dataset.get_dimension(dimension)
        idx = dataset.get_dimension_index(dimension)
        data = dataset.data
        if idx not in [0, 1] and not expanded:
            return data[dimension.name].values
        values = []
        columns = list(data.columns)
        arr = geom_to_array(data.geometry.iloc[0])
        ds = dataset.clone(arr, datatype=cls.subtypes, vdims=[])
        for i, d in enumerate(data.geometry):
            arr = geom_to_array(d)
            if idx in [0, 1]:
                ds.data = arr
                values.append(ds.interface.values(ds, dimension))
            else:
                arr = np.full(len(arr), data.iloc[i, columns.index(dimension.name)])
                values.append(arr)
            values.append([np.NaN])
        return np.concatenate(values[:-1]) if values else np.array([])
model.py 文件源码 项目:MOQA 作者: pprakhar30 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def create_validTest_data(self):

        for i in range(len(self.validTestQ)):
            qId         = self.validTestQ[i]
            item        = self.corpus.QAnswers[qId].itemId
            question    = self.corpus.QAnswers[qId].qFeature
            answer_list = [qId, self.validTestNa[i]]

            Pairwise    = self.create_dense_pairwise(item, qId)
            Question    = self.create_sparse_one(qFeature = question)
            Answer      = self.create_sparse_one(answer_list = answer_list) 
            Review      = self.Review[item]
            TermtoTermR     = self.create_sparse_two(item, qFeature = question)
            TermtoTermP     = self.create_sparse_two(item, answer_list = answer_list)

            Question_I      = (Question[0], Question[1] if Question[1].size == 1 and Question[1][0] == 0 else np.full((Question[1].size), 1.0/np.sqrt(Question[1].size)), Question[2])
            Answer_I        = (Answer[0], Answer[1] if Answer[1].size == 1 and Answer[1][0] == 0 else np.full((Answer[1].size), 1.0/np.sqrt(Answer[1].size)), Answer[2])
            Review_I    = (Review[0], np.full((Review[1].size), 1.0/np.sqrt(Review[1].size)), Review[2])

            self.validTestM.append((Pairwise, Question, Answer, Review, TermtoTermR, TermtoTermP, Question_I, Answer_I, Review_I))
bridges_test.py 文件源码 项目:conv_seq2seq 作者: tobyyouup 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def setUp(self):
    super(BridgeTest, self).setUp()
    self.batch_size = 4
    self.encoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.GRUCell(4), tf.contrib.rnn.GRUCell(8)])
    self.decoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.LSTMCell(16), tf.contrib.rnn.GRUCell(8)])
    final_encoder_state = nest.map_structure(
        lambda x: tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, x),
            dtype=tf.float32),
        self.encoder_cell.state_size)
    self.encoder_outputs = EncoderOutput(
        outputs=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values_length=np.full([self.batch_size], 10),
        final_state=final_encoder_state)
dominant_sets.py 文件源码 项目:dense_graph_reducer 作者: MarcoFiorucci 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def dominant_sets(graph_mat, max_k=0, tol=1e-5, max_iter=1000):
    graph_cardinality = graph_mat.shape[0]
    if max_k == 0:
        max_k = graph_cardinality
    clusters = np.zeros(graph_cardinality)
    already_clustered = np.full(graph_cardinality, False, dtype=np.bool)

    for k in range(max_k):
        if graph_cardinality - already_clustered.sum() <= ceil(0.05 * graph_cardinality):
            break
        # 1000 is added to obtain more similar values when x is normalized
        # x = np.random.random_sample(graph_cardinality) + 1000.0
        x = np.full(graph_cardinality, 1.0)
        x[already_clustered] = 0.0
        x /= x.sum()

        y = replicator(graph_mat, x, np.where(~already_clustered)[0], tol, max_iter)
        cluster = np.where(y >= 1.0 / (graph_cardinality * 1.5))[0]
        already_clustered[cluster] = True
        clusters[cluster] = k
    clusters[~already_clustered] = k
    return clusters
nec_agent.py 文件源码 项目:nec_tensorflow 作者: toth-adam 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _search_ann(self, search_keys, dnd_keys, update_LRU_order):
        batch_indices = []
        for act, ann in self.anns.items():
            # These are the indices we get back from ANN search
            indices = ann.query(search_keys)
            log.debug("ANN indices for action {}: {}".format(act, indices))
            # Create numpy array with full of corresponding action vector index
            action_indices = np.full(indices.shape, self.action_vector.index(act))
            log.debug("Action indices for action {}: {}".format(act, action_indices))
            # Riffle two arrays
            tf_indices = self._riffle_arrays(action_indices, indices)
            batch_indices.append(tf_indices)
            # Very important part: Modify LRU Order here
            # Doesn't work without tabular update of course!
            if update_LRU_order == 1:
                _ = [self.tf_index__state_hash[act][i] for i in indices.ravel()]
        np_batch = np.asarray(batch_indices)
        log.debug("Batch update indices: {}".format(np_batch))

        # Reshaping to gather_nd compatible format
        final_indices = np.asarray([np_batch[:, j, :, :] for j in range(np_batch.shape[1])], dtype=np.int32)

        return final_indices
geometry.py 文件源码 项目:xdesign 作者: tomography 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def contains(self, other):
        if isinstance(other, Point):
            x = other._x
        elif isinstance(other, np.ndarray):
            x = other
        elif isinstance(other, Polygon):
            x = _points_to_array(other.vertices)
            return np.all(self.contains(x))
        else:
            raise TypeError("P must be point or ndarray")

        # keep track of whether each point is contained in a face
        bools = np.full(x.shape[0], False, dtype=bool)
        for f in self.faces:
            bools = np.logical_or(bools, f.contains(x))
        return bools


问题


面经


文章

微信
公众号

扫码关注公众号