python类full()的实例源码

pong_catastrophe.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask
pong_catastrophe.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask
pong_catastrophe.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask
pong_catastrophe.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask
pong_catastrophe.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def label_and_build_mask(self, episode):
        is_catastrophe_array = np.array(
            [is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
        # should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])

        labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
        mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)

        for i in range(len(episode.frames)):
            if i + self.block_radius + 1 >= len(episode.frames):
                mask[i] = False
                continue
            if is_catastrophe_array[i]:
                mask[i] = False
                continue
            for j in range(self.block_radius + 1):
                if is_catastrophe_array[i + j + 1]:
                    labels[i] = True
                    break
        return labels, mask
bridges_test.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def setUp(self):
    super(BridgeTest, self).setUp()
    self.batch_size = 4
    self.encoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.GRUCell(4), tf.contrib.rnn.GRUCell(8)])
    self.decoder_cell = tf.contrib.rnn.MultiRNNCell(
        [tf.contrib.rnn.LSTMCell(16), tf.contrib.rnn.GRUCell(8)])
    final_encoder_state = nest.map_structure(
        lambda x: tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, x),
            dtype=tf.float32),
        self.encoder_cell.state_size)
    self.encoder_outputs = EncoderOutput(
        outputs=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values=tf.convert_to_tensor(
            value=np.random.randn(self.batch_size, 10, 16), dtype=tf.float32),
        attention_values_length=np.full([self.batch_size], 10),
        final_state=final_encoder_state)
sampler.py 文件源码 项目:bnn-analysis 作者: myshkov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _normalise_data(self):
        self.train_x_mean = np.zeros(self.input_dim)
        self.train_x_std = np.ones(self.input_dim)

        self.train_y_mean = np.zeros(self.output_dim)
        self.train_y_std = np.ones(self.output_dim)

        if self.normalise_data:
            self.train_x_mean = np.mean(self.train_x, axis=0)
            self.train_x_std = np.std(self.train_x, axis=0)
            self.train_x_std[self.train_x_std == 0] = 1.

            self.train_x = (self.train_x - np.full(self.train_x.shape, self.train_x_mean, dtype=np.float32)) / \
                           np.full(self.train_x.shape, self.train_x_std, dtype=np.float32)

            self.test_x = (self.test_x - np.full(self.test_x.shape, self.train_x_mean, dtype=np.float32)) / \
                          np.full(self.test_x.shape, self.train_x_std, dtype=np.float32)

            self.train_y_mean = np.mean(self.train_y, axis=0)
            self.train_y_std = np.std(self.train_y, axis=0)

            if self.train_y_std == 0:
                self.train_y_std[self.train_y_std == 0] = 1.

            self.train_y = (self.train_y - self.train_y_mean) / self.train_y_std
tsbitmapper.py 文件源码 项目:tsbitmaps 作者: binhmop 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def fit_predict(self, ts):
        """
        Unsupervised training of TSBitMaps.

        :param ts: 1-D numpy array or pandas.Series 
        :return labels: `+1` for normal observations and `-1` for abnormal observations
        """
        assert self._lag_window_size > self._feature_window_size, 'lag_window_size must be >= feature_window_size'

        self._ref_ts = ts
        scores = self._slide_chunks(ts)
        self._ref_bitmap_scores = scores

        thres = np.percentile(scores[self._lag_window_size: -self._lead_window_size + 1], self._q)

        labels = np.full(len(ts), 1)
        for idx, score in enumerate(scores):
            if score > thres:
                labels[idx] = -1

        return labels
bitmapviz.py 文件源码 项目:tsbitmaps 作者: binhmop 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def create_bitmap_grid(bitmap, n, num_bins, level_size):
    """
    Arranges a time-series bitmap into a 2-D grid for heatmap visualization
    """
    assert num_bins % n == 0, 'num_bins has to be a multiple of n'
    m = num_bins // n

    row_count = int(math.pow(m, level_size))
    col_count = int(math.pow(n, level_size))

    grid = np.full((row_count, col_count), 0.0)

    for feat, count in bitmap.items():
        i, j = symbols2index(m, n, feat)
        grid[i, j] = count
    return grid
runLDAvis.py 文件源码 项目:corporadb 作者: nlesc-sherlock 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_data(setname):
    dataset = CorporaDataSet(setname)
#    topic_word_array = dataset.getWordsInTopicMatrix()
#    topic_doc_array = dataset.getDocsInTopicMatrix()
    topic_word_array = dataset.getDocsInTopicMatrix()
    topic_doc_array = dataset.getWordsInTopicMatrix().T
    doc_length_array = numpy.full([topic_doc_array.shape[0]],1)
    vocabulary = dataset.loadVocabulary()[0].keys()
    print "topic word array shape: ",topic_word_array.shape
    print "topic doc shape: ",topic_doc_array.shape
    print "vocabulary: ",len(vocabulary)
    wordfreqs = mmread(setname + ".mtx").sum(1)
    word_freq_array = numpy.array(wordfreqs)[:,0]

    return {topic_word_key:topic_word_array,
            topic_doc_key:topic_doc_array,
            doc_length_key:doc_length_array,
            vocabulary_key:vocabulary,
            word_freq_key:word_freq_array}
sph.py 文件源码 项目:sound_field_analysis-py 作者: QULab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def sphankel1(n, kr):
    """Spherical Hankel (first kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    hn1 : complex float
       Spherical Hankel function hn (first kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    hn1 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    hn1[kr_nonzero] = _np.sqrt(_np.pi / 2) / _np.lib.scimath.sqrt(kr[kr_nonzero]) * hankel1(n[kr_nonzero] + 0.5, kr[kr_nonzero])
    return hn1
sph.py 文件源码 项目:sound_field_analysis-py 作者: QULab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def sphankel2(n, kr):
    """Spherical Hankel (second kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    hn2 : complex float
       Spherical Hankel function hn (second kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    hn2 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    hn2[kr_nonzero] = _np.sqrt(_np.pi / 2) / _np.lib.scimath.sqrt(kr[kr_nonzero]) * hankel2(n[kr_nonzero] + 0.5, kr[kr_nonzero])
    return hn2
sph.py 文件源码 项目:sound_field_analysis-py 作者: QULab 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def dsphankel1(n, kr):
    """Derivative spherical Hankel (first kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    dhn1 : complex float
       Derivative of spherical Hankel function hn' (second kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    dhn1 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    dhn1[kr_nonzero] = 0.5 * (sphankel1(n[kr_nonzero] - 1, kr[kr_nonzero]) - sphankel1(n[kr_nonzero] + 1, kr[kr_nonzero]) - sphankel1(n[kr_nonzero], kr[kr_nonzero]) / kr[kr_nonzero])
    return dhn1
sph.py 文件源码 项目:sound_field_analysis-py 作者: QULab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def dsphankel2(n, kr):
    """Derivative spherical Hankel (second kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    dhn2 : complex float
       Derivative of spherical Hankel function hn' (second kind)
    """
    n, kr = scalar_broadcast_match(n, kr)
    dhn2 = _np.full(n.shape, _np.nan, dtype=_np.complex_)
    kr_nonzero = kr != 0
    dhn2[kr_nonzero] = 0.5 * (sphankel2(n[kr_nonzero] - 1, kr[kr_nonzero]) - sphankel2(n[kr_nonzero] + 1, kr[kr_nonzero]) - sphankel2(n[kr_nonzero], kr[kr_nonzero]) / kr[kr_nonzero])
    return dhn2
test_disks.py 文件源码 项目:circletracking 作者: caspervdw 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_find_multiple_noisy(self):
        """ Test finding multiple particles (noisy) """
        self.atol = 5
        radius = np.random.random() * 15 + 15
        generated_image = self.generate_image(radius, 10, noise=0.2)
        actual_number = len(generated_image.coords)
        fits = find_disks(generated_image.image, (radius / 2.0,
                                                  radius * 2.0),
                          maximum=actual_number)

        _, coords = sort_positions(generated_image.coords,
                                   np.array([fits['y'].values,
                                             fits['x'].values]).T)

        if len(fits) == 0:  # Nothing found
            actual = np.repeat([[np.nan, np.nan, np.nan]], actual_number,
                                axis=0)
        else:
            actual = fits[['r', 'y', 'x']].values.astype(np.float64)

        expected = np.array([np.full(actual_number, radius, np.float64),
                             coords[:, 0], coords[:, 1]]).T

        return np.sqrt(((actual - expected)**2).mean(0)), [0] * 3
test_mixedvine.py 文件源码 项目:mixedvines 作者: asnelt 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_fit(self):
        '''
        Tests the fit to samples.
        '''
        # Generate random variates
        size = 100
        samples = self.vine.rvs(size)
        # Fit mixed vine to samples
        is_continuous = np.full((self.dim), True, dtype=bool)
        is_continuous[1] = False
        vine_est = MixedVine.fit(samples, is_continuous)
        assert_approx_equal(vine_est.root.copulas[0].theta, 0.77490,
                            significant=5)
        assert_approx_equal(vine_est.root.input_layer.copulas[0].theta,
                            4.01646, significant=5)
        assert_approx_equal(vine_est.root.input_layer.copulas[1].theta,
                            4.56877, significant=5)
copula.py 文件源码 项目:mixedvines 作者: asnelt 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _logcdf(self, samples):
        lower = np.full(2, -np.inf)
        upper = norm.ppf(samples)
        limit_flags = np.zeros(2)
        if upper.shape[0] > 0:

            def func1d(upper1d):
                '''
                Calculates the multivariate normal cumulative distribution
                function of a single sample.
                '''
                return mvn.mvndst(lower, upper1d, limit_flags, self.theta)[1]

            vals = np.apply_along_axis(func1d, -1, upper)
        else:
            vals = np.empty((0, ))
        old_settings = np.seterr(divide='ignore')
        vals = np.log(vals)
        np.seterr(**old_settings)
        vals[np.any(samples == 0.0, axis=1)] = -np.inf
        vals[samples[:, 0] == 1.0] = np.log(samples[samples[:, 0] == 1.0, 1])
        vals[samples[:, 1] == 1.0] = np.log(samples[samples[:, 1] == 1.0, 0])
        return vals
aggregate_cells_test.py 文件源码 项目:geopyspark 作者: locationtech-labs 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_aggregate_variance(self):
        result = self.raster_rdd.aggregate_by_cell(Operation.VARIANCE)

        band = np.array([[
            [1,   1.5, 2,   2.5, 3],
            [1.5, 2,   2.5, 3,   3.5],
            [2,   2.5, 3,   3.5, 4],
            [2.5, 3,   3.5, 4,   4.5],
            [3,   3.5, 4,   4.5, 5]]])

        expected = np.array([
            ((self.first - band) ** 2) + ((self.second - band) ** 2),
            ((self.first - band) ** 2) + ((self.second - band) ** 2)
        ])
        expected_2 = np.full((5, 5), -1.0)

        self.assertTrue((result.lookup(1, 0)[0].cells == expected).all())
        self.assertTrue((result.lookup(0, 0)[0].cells == expected_2).all())
aggregate_cells_test.py 文件源码 项目:geopyspark 作者: locationtech-labs 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_aggregate_std(self):
        result = self.raster_rdd.aggregate_by_cell(Operation.STANDARD_DEVIATION)

        band = np.array([[
            [1,   1.5, 2,   2.5, 3],
            [1.5, 2,   2.5, 3,   3.5],
            [2,   2.5, 3,   3.5, 4],
            [2.5, 3,   3.5, 4,   4.5],
            [3,   3.5, 4,   4.5, 5]]])

        expected = np.array([
            (((self.first - band) ** 2) + ((self.second - band) ** 2)) ** (1/2),
            (((self.first - band) ** 2) + ((self.second - band) ** 2)) ** (1/2)
        ])
        expected_2 = np.full((5, 5), -1.0)

        self.assertTrue((result.lookup(1, 0)[0].cells == expected).all())
        self.assertTrue((result.lookup(0, 0)[0].cells == expected_2).all())
visualization.py 文件源码 项目:Supply-demand-forecasting 作者: LevinJ 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def show_weather_bydate(self):
        self.weathdf['gap'] = self.weathdf['time_slotid'].apply(self.find_gap_by_timeslot)
        by_date = self.weathdf.groupby('time_date')
        size = len(by_date)
        col_len = row_len = math.ceil(math.sqrt(size))
        count = 1
        for name, group in by_date:
            ax=plt.subplot(row_len, col_len, count)
#             temp = np.empty(group['time_id'].shape[0])
#             temp.fill(2)

#             ax.plot(group['time_id'], group['gap']/group['gap'].max(), 'r', alpha=0.75)
#             ax.plot(group['time_id'], group['weather']/group['weather'].max())
            ax.bar(group['time_id'], group['weather'], width=1)
            ax.set_title(name)
            count = count + 1
#             plt.bar(group['time_id'], np.full(group['time_id'].shape[0], 5), width=1)

        plt.show()
        return
datasets.py 文件源码 项目:enet-keras 作者: PavlosMelissinos 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _retrieve_sample(self, annotation):
        epsilon = 0.05
        high_val = 1 - epsilon
        low_val = 0 + epsilon
        coco_image = self._coco.loadImgs(annotation['image_id'])[0]
        image_path = os.path.join(self._config.data_dir['images'], coco_image['file_name'])
        image = utils.load_image(image_path)

        ann_mask = self._coco.annToMask(annotation)

        mask_categorical = np.full((ann_mask.shape[0], ann_mask.shape[1], self.num_classes()), low_val, dtype=np.float32)
        mask_categorical[:, :, 0] = high_val  # every pixel begins as background

        class_index = self._cid_to_id[annotation['category_id']]
        mask_categorical[ann_mask > 0, class_index] = high_val
        mask_categorical[ann_mask > 0, 0] = low_val  # remove background label from pixels of this (non-bg) category
        return image, mask_categorical
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def round(self, decimals=0, out=None):
        """
        Return an array rounded a to the given number of decimals.

        Refer to `numpy.around` for full documentation.

        See Also
        --------
        numpy.around : equivalent function

        """
        result = self._data.round(decimals=decimals, out=out).view(type(self))
        if result.ndim > 0:
            result._mask = self._mask
            result._update_from(self)
        elif self._mask:
            # Return masked when the scalar is masked
            result = masked
        # No explicit output: we're done
        if out is None:
            return result
        if isinstance(out, MaskedArray):
            out.__setmask__(self._mask)
        return out
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def reshape(a, new_shape, order='C'):
    """
    Returns an array containing the same data with a new shape.

    Refer to `MaskedArray.reshape` for full documentation.

    See Also
    --------
    MaskedArray.reshape : equivalent function

    """
    # We can't use 'frommethod', it whine about some parameters. Dmmit.
    try:
        return a.reshape(new_shape, order=order)
    except AttributeError:
        _tmp = narray(a, copy=False).reshape(new_shape, order=order)
        return _tmp.view(MaskedArray)
core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def dump(a, F):
    """
    Pickle a masked array to a file.

    This is a wrapper around ``cPickle.dump``.

    Parameters
    ----------
    a : MaskedArray
        The array to be pickled.
    F : str or file-like object
        The file to pickle `a` to. If a string, the full path to the file.

    """
    if not hasattr(F, 'readline'):
        F = open(F, 'w')
    return pickle.dump(a, F)
create_datasets.py 文件源码 项目:seglink 作者: bgshih 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def create_merge_multiple(save_path, creators, shuffle=True):
  n_sample_total = 0
  creator_indices = []
  for i, creator in enumerate(creators):
    creator._read_list()
    n_sample_total += creator.n_samples
    creator_indices.append(np.full((creator.n_samples), i, dtype=np.int))
  creator_indices = np.concatenate(creator_indices)

  if shuffle:
    np.random.shuffle(creator_indices)

  print('Start creating dataset with {} examples. Output path: {}'.format(
        n_sample_total, save_path))
  writer = tf.python_io.TFRecordWriter(save_path)
  count = 0
  for i in range(n_sample_total):
    creator = creators[creator_indices[i]]
    example = creator._create_next_sample()
    if example is not None:
      writer.write(example.SerializeToString())
      count += 1
    if i > 0 and i % 100 == 0:
      print('Progress %d / %d' % (i, n_sample_total))
  print('Done creating %d samples' % count)
tools.py 文件源码 项目:guesswhat 作者: GuessWhatGame 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def list_to_padded_tokens(dialogues, tokenizer):

    # compute the length of the dialogue
    seq_length = [len(d) for d in dialogues]

    # Get dialogue numpy max size
    batch_size = len(dialogues)
    max_seq_length = max(seq_length)

    # Initialize numpy array
    padded_tokens = np.full((batch_size, max_seq_length), tokenizer.padding_token, dtype=np.int32)

    # fill the padded array with word_id
    for i, (one_path, l) in enumerate(zip(dialogues, seq_length)):
       padded_tokens[i, 0:l] = one_path

    return padded_tokens, seq_length
parsers.py 文件源码 项目:Master-Thesis 作者: AntoinePassemiers 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __parse_pairs__(self, filepath, delimiter = ',', target_col = 2, column_names = list(), sequence_length = None):
        assert("target" in column_names)
        with open(filepath, "r") as f:
            lines = f.readlines()
            try:
                if sequence_length is None:
                    dataframe = pd.read_csv(filepath, sep = delimiter, skip_blank_lines = True,
                        header = None, names = column_names, index_col = False)
                    sequence_length = np.asarray(dataframe[["i", "j"]]).max()
            except ValueError:
                return None
            data = np.full((sequence_length, sequence_length), np.nan, dtype = np.double)
            np.fill_diagonal(data, Params.DISTANCE_WITH_ITSELF)
            for line in lines:
                elements = line.rstrip("\r\n").split(delimiter)
                i, j, k = int(elements[0]) - 1, int(elements[1]) - 1, float(elements[target_col])
                data[i, j] = data[j, i] = k
            if np.isnan(data).any():
                # sequence_length is wrong or the input file has missing pairs
                warnings.warn("Warning: Pairs of residues are missing from the contacts text file")
                warnings.warn("Number of missing pairs: %i " % np.isnan(data).sum())
            return data
utils.py 文件源码 项目:Master-Thesis 作者: AntoinePassemiers 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def extended_2d_fancy_indexing(arr, sl1, sl2, value_of_nan):
    new_shape = tuple([sl1.stop - sl1.start, sl2.stop - sl2.start] + list(arr.shape[2:]))
    result = np.full(new_shape, value_of_nan, dtype = arr.dtype)
    x_lower = 0 if sl1.start < 0 else sl1.start
    x_upper = arr.shape[0] if sl1.stop > arr.shape[0] else sl1.stop
    y_lower = 0 if sl2.start < 0 else sl2.start
    y_upper = arr.shape[1] if sl2.stop > arr.shape[1] else sl2.stop

    new_x_lower = max(0, - sl1.stop + (sl1.stop - sl1.start))
    new_x_upper = new_x_lower + (x_upper - x_lower)
    new_y_lower = max(0, - sl2.stop + (sl2.stop - sl2.start))
    new_y_upper = new_y_lower + (y_upper - y_lower)

    if len(result.shape) == 2:
        result[new_x_lower:new_x_upper, new_y_lower:new_y_upper] = arr[x_lower:x_upper, y_lower:y_upper]
    elif len(result.shape) == 3:
        result[new_x_lower:new_x_upper, new_y_lower:new_y_upper, :] = arr[x_lower:x_upper, y_lower:y_upper, :]
    else:
        raise WrongTensorShapeError()
    return result
additive_ou.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def select_action(self, t, greedy_action_func, action_value=None):
        a = greedy_action_func()
        if self.ou_state is None:
            if self.start_with_mu:
                self.ou_state = np.full(a.shape, self.mu, dtype=np.float32)
            else:
                sigma_stable = (self.sigma /
                                np.sqrt(2 * self.theta - self.theta ** 2))
                self.ou_state = np.random.normal(
                    size=a.shape,
                    loc=self.mu, scale=sigma_stable).astype(np.float32)
        else:
            self.evolve()
        noise = self.ou_state
        self.logger.debug('t:%s noise:%s', t, noise)
        return a + noise
test_copy_param.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_soft_copy_param(self):
        a = L.Linear(1, 5)
        b = L.Linear(1, 5)

        a.W.data[:] = 0.5
        b.W.data[:] = 1

        # a = (1 - tau) * a + tau * b
        copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)

        np.testing.assert_almost_equal(a.W.data, np.full(a.W.data.shape, 0.55))
        np.testing.assert_almost_equal(b.W.data, np.full(b.W.data.shape, 1.0))

        copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)

        np.testing.assert_almost_equal(
            a.W.data, np.full(a.W.data.shape, 0.595))
        np.testing.assert_almost_equal(b.W.data, np.full(b.W.data.shape, 1.0))


问题


面经


文章

微信
公众号

扫码关注公众号