python类set_printoptions()的实例源码

visualization.py 文件源码 项目:DLDisambiguation 作者: Labyrinth108 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def main():
    # model_file = "../data/word2vec/character.model"
    model_file = "../data/word2vec_new/word.model"
    checkSimilarity(model_file, "?")

    # character_wv_file = '../data/word2vec/character_model.txt'
    # word_wv_file = '../data/word2vec/word_model.txt'
    #
    # embeddings_file = word_wv_file
    # wv, vocabulary = load_embeddings(embeddings_file)
    #
    # tsne = TSNE(n_components=2, random_state=0)
    # np.set_printoptions(suppress=True)
    # Y = tsne.fit_transform(wv[:1000, :])
    #
    # plt.scatter(Y[:, 0], Y[:, 1])
    # for label, x, y in zip(vocabulary, Y[:, 0], Y[:, 1]):
    #     plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')
    # plt.show()
test_arrayprint.py 文件源码 项目:lambda-numba 作者: rlhotovy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
utils.py 文件源码 项目:hLSTMat 作者: zhaoluffy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def grad_nan_report(grads, tparams):
    numpy.set_printoptions(precision=3)
    D = OrderedDict()
    i = 0
    NaN_keys = []
    magnitude = []
    assert len(grads) == len(tparams)
    for k, v in tparams.iteritems():
        grad = grads[i]
        magnitude.append(numpy.abs(grad).mean())
        if numpy.isnan(grad.sum()):
            NaN_keys.append(k)
        #assert v.get_value().shape == grad.shape
        D[k] = grad
        i += 1
    #norm = [numpy.sqrt(numpy.sum(grad**2)) for grad in grads]
    #print '\tgrad mean(abs(x))', numpy.array(magnitude)
    return D, NaN_keys
test_arrayprint.py 文件源码 项目:deliver 作者: orchestor 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([ 0.,  1.,  2.])")
logger.py 文件源码 项目:rankpy 作者: dmitru 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def pformat(obj, indent=0, depth=3):
    if 'numpy' in sys.modules:
        import numpy as np
        print_options = np.get_printoptions()
        np.set_printoptions(precision=6, threshold=64, edgeitems=1)
    else:
        print_options = None
    out = pprint.pformat(obj, depth=depth, indent=indent)
    if print_options:
        np.set_printoptions(**print_options)
    return out


###############################################################################
# class `Logger`
###############################################################################
test_metaswap.py 文件源码 项目:hco-experiments 作者: zooniverse 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_swap_subject_cm(swappy,title,name):

    from sklearn.metrics import confusion_matrix
    import numpy as np


    subs = swappy.exportSubjectData()
    labs = getLabelReal(subs)

    # Compute confusion matrix
    cnf_matrix = confusion_matrix(labs['actual'], labs['predicted'])
    np.set_printoptions(precision=2)
    plt.figure()
    plot_confusion_matrix(cnf_matrix, classes=['Bogus','Real'],
                          normalize=False,
                          title=title)

    plt.savefig(name)
    plt.show()


    #import pandas as pd
    #ps = pd.Series([(labs['actual'][x],labs['predicted'][x]) for x in range(0, len(labs['actual']))])
    #counts = ps.value_counts()
    #counts
util.py 文件源码 项目:treecat 作者: posterior 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def np_printoptions(**kwargs):
    """Context manager to temporarily set numpy print options."""
    old = np.get_printoptions()
    np.set_printoptions(**kwargs)
    yield
    np.set_printoptions(**old)
log_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _nn_pose_fill(valid): 
        """
        Looks up closest True for each False and returns
        indices for fill-in-lookup
        In: [True, False, True, ... , False, True]
        Out: [0, 0, 2, ..., 212, 212]
        """

        valid_inds,  = np.where(valid)
        invalid_inds,  = np.where(~valid)

        all_inds = np.arange(len(valid))
        all_inds[invalid_inds] = -1

        for j in range(10): 
            fwd_inds = valid_inds + j
            bwd_inds = valid_inds - j

            # Forward fill
            invalid_inds, = np.where(all_inds < 0)
            fwd_fill_inds = np.intersect1d(fwd_inds, invalid_inds)
            all_inds[fwd_fill_inds] = all_inds[fwd_fill_inds-j]

            # Backward fill
            invalid_inds, = np.where(all_inds < 0)
            if not len(invalid_inds): break
            bwd_fill_inds = np.intersect1d(bwd_inds, invalid_inds)
            all_inds[bwd_fill_inds] = all_inds[bwd_fill_inds+j]

            # Check if any missing 
            invalid_inds, = np.where(all_inds < 0)
            if not len(invalid_inds): break

        # np.set_printoptions(threshold=np.nan)

        # print valid.astype(np.int)
        # print np.array_str(all_inds)
        # print np.where(all_inds < 0)

        return all_inds
tools.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def save_results(save_dict=None, **kwargs):
    np.set_printoptions(precision=2,threshold=np.nan)
    if save_dict==None:
        save_dict=kwargs
    for key in save_dict.keys():
        save_dict[key] = str(save_dict[key])
    np.set_printoptions(precision=2,threshold=1000)
    append_json('experiments.json', save_dict)
    jsondict2csv('experiments.json', 'experiments.csv')
xgb_tf_profile.py 文件源码 项目:DeepTFAS-in-D.mel 作者: mu102449 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def run_model(model):
    '''Train model'''
    # Call global variables
    x_train, x_test, y_train, y_test = X_TRAIN, X_TEST, Y_TRAIN, Y_TEST

    model.fit(x_train, y_train)
    # make predictions for test data
    y_pred = model.predict(x_test)

    # Accuracy
    acc = metrics.accuracy_score(y_test, y_pred)
    print('Accuracy: %.2f%%' % (acc * 100.0))

    # F1_score
    # f1_score = metrics.f1_score(y_test, y_pred)
    # print("F1_score: %.2f%%" % (f1_score * 100.0))

    # AUC of ROC
    fpr, tpr, _ = metrics.roc_curve(y_test, y_pred)
    auc = metrics.auc(fpr, tpr)
    print('AUC: %.3f' % (auc))

    # Logs for each fold
    crossvalidation_acc.append(acc)
    crossvalidation_auc.append(auc)

    if ARGS.m:
        cnf_matrix = confusion_matrix(y_test, y_pred)
        print(cnf_matrix)
        np.set_printoptions(precision=2)
        if ARGS.t == '2':
            classes = np.asarray(['Spiced', 'Non-spliced'])
            plot_confusion_matrix(cnf_matrix, classes=classes, normalize=True)
        elif ARGS.t == '3':
            classes = np.asarray(['Low', 'Medium', 'High'])
            plot_confusion_matrix(cnf_matrix, classes=classes, normalize=True)
        plt.show()
    if ARGS.f:
        feature_selection(imp=IMP, model=model)

    print()
models.py 文件源码 项目:BISIP 作者: clberube 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, model, filename, mcmc=default_mcmc, headers=1,
                   ph_units="mrad", cc_modes=2, decomp_poly=4, c_exp=1.0, 
                   log_min_tau=-3, guess_noise=False, keep_traces=False, 
                   ccdt_priors='auto', ccdt_cfg=None):

        self.model = model
        self.filename = filename 
        self.mcmc = mcmc
        self.headers = headers
        self.ph_units = ph_units
        self.cc_modes = cc_modes
        self.decomp_poly = decomp_poly
        self.c_exp = c_exp
        self.log_min_tau = log_min_tau
        self.guess_noise = guess_noise
        self.keep_traces = keep_traces
        self.ccd_priors = ccdt_priors
        self.ccdtools_config = ccdt_cfg
        if model == "CCD":
            if self.ccd_priors == 'auto':
                self.ccd_priors = self.get_ccd_priors(config=self.ccdtools_config)
                print("\nUpdated CCD priors with new data")
        self.start()



#    def print_resul(self):
#    #==============================================================================
#        # Impression des résultats
#        pm, model, filename = self.pm, self.model, self.filename
#        print('\n\nInversion success!')
#        print('Name of file:', filename)
#        print('Model used:', model)
#        e_keys = sorted([s for s in list(pm.keys()) if "_std" in s])
#        v_keys = [e.replace("_std", "") for e in e_keys]
#        labels = ["{:<8}".format(x+":") for x in v_keys]
#        np.set_printoptions(formatter={'float': lambda x: format(x, '6.3E')})
#        for l, v, e in zip(labels, v_keys, e_keys):
#            print(l, pm[v], '+/-', pm[e], np.char.mod('(%.2f%%)',abs(100*pm[e]/pm[v])))
models.py 文件源码 项目:BISIP 作者: clberube 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, model, filename, mcmc=default_mcmc, headers=1,
                   ph_units="mrad", cc_modes=2, decomp_poly=4, c_exp=1.0, 
                   log_min_tau=-3, guess_noise=False, keep_traces=False, 
                   ccdt_priors='auto', ccdt_cfg=None):

        self.model = model
        self.filename = filename 
        self.mcmc = mcmc
        self.headers = headers
        self.ph_units = ph_units
        self.cc_modes = cc_modes
        self.decomp_poly = decomp_poly
        self.c_exp = c_exp
        self.log_min_tau = log_min_tau
        self.guess_noise = guess_noise
        self.keep_traces = keep_traces
        self.ccd_priors = ccdt_priors
        self.ccdtools_config = ccdt_cfg
        if model == "CCD":
            if self.ccd_priors == 'auto':
                self.ccd_priors = self.get_ccd_priors(config=self.ccdtools_config)
                print("\nUpdated CCD priors with new data")
        self.start()



#    def print_resul(self):
#    #==============================================================================
#        # Impression des résultats
#        pm, model, filename = self.pm, self.model, self.filename
#        print('\n\nInversion success!')
#        print('Name of file:', filename)
#        print('Model used:', model)
#        e_keys = sorted([s for s in list(pm.keys()) if "_std" in s])
#        v_keys = [e.replace("_std", "") for e in e_keys]
#        labels = ["{:<8}".format(x+":") for x in v_keys]
#        np.set_printoptions(formatter={'float': lambda x: format(x, '6.3E')})
#        for l, v, e in zip(labels, v_keys, e_keys):
#            print(l, pm[v], '+/-', pm[e], np.char.mod('(%.2f%%)',abs(100*pm[e]/pm[v])))
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    # markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]
    plt.rc('legend',**{'fontsize':30})
    classes_to_visual = list(set(classes_to_visual))
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual:
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=1, marker=markers[class_ids[c]],
                        markersize=10, label=c)
    legend = plt.legend(loc='upper right', shadow=True)
    # plt.title("tsne")
    # plt.savefig(save_file)
    plt.savefig(save_file, format='eps', dpi=2000)
    plt.show()
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_tsne_3d(doc_codes, doc_labels, classes_to_visual, save_file, maker_size=None, opaque=None):
    markers = ["D", "p", "*", "s", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    plt.rc('legend',**{'fontsize':20})
    colors = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers
    while True:
        if C <= len(colors):
            break
        colors += colors

    class_ids = dict(zip(classes_to_visual, range(C)))

    if isinstance(doc_codes, dict) and isinstance(doc_labels, dict):
        codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if doc_labels[doc] in classes_to_visual])
    else:
        codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=3, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    fig = plt.figure(figsize=(10, 10), facecolor='white')
    ax = fig.add_subplot(111, projection='3d')

    # The problem is that the legend function don't support the type returned by a 3D scatter.
    # So you have to create a "dummy plot" with the same characteristics and put those in the legend.
    scatter_proxy = []
    for i in range(C):
        cls = classes_to_visual[i]
        idx = np.array(labels) == cls
        ax.scatter(X[idx, 0], X[idx, 1], X[idx, 2], c=colors[i], alpha=opaque[i] if opaque else 1, s=maker_size[i] if maker_size else 20, marker=markers[i], label=cls)
        scatter_proxy.append(mpl.lines.Line2D([0],[0], linestyle="none", c=colors[i], marker=markers[i], label=cls))
    ax.legend(scatter_proxy, classes_to_visual, numpoints=1)
    plt.savefig(save_file)
    plt.show()
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def DBN_plot_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_ids = dict(zip(classes_to_visual.keys(), range(C)))

    codes, labels = doc_codes, doc_labels

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual.keys():
        idx = np.array(labels) == c
        # idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
    legend = plt.legend(loc='upper center', shadow=True)
    plt.title("tsne")
    plt.savefig(save_file)
    plt.show()
visualize.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def reuters_visualize_tsne(doc_codes, doc_labels, classes_to_visual, save_file):
    """
        Visualize the input data on a 2D PCA plot. Depending on the number of components,
        the plot will contain an X amount of subplots.
        @param doc_codes:
        @param number_of_components: The number of principal components for the PCA plot.
    """

    # markers = ["p", "s", "h", "H", "+", "x", "D"]
    markers = ["o", "v", "8", "s", "p", "*", "h", "H", "+", "x", "D"]

    C = len(classes_to_visual)
    while True:
        if C <= len(markers):
            break
        markers += markers

    class_names = classes_to_visual.keys()
    class_ids = dict(zip(class_names, range(C)))
    class_names = set(class_names)
    codes, labels = zip(*[(code, doc_labels[doc]) for doc, code in doc_codes.items() if class_names.intersection(set(doc_labels[doc]))])

    X = np.r_[list(codes)]
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    np.set_printoptions(suppress=True)
    X = tsne.fit_transform(X)

    plt.figure(figsize=(10, 10), facecolor='white')

    for c in classes_to_visual.keys():
        idx = get_indices(labels, c)
        plt.plot(X[idx, 0], X[idx, 1], linestyle='None', alpha=0.6, marker=markers[class_ids[c]],
                        markersize=6, label=classes_to_visual[c])
    legend = plt.legend(loc='upper center', shadow=True)
    plt.title("tsne")
    plt.savefig(save_file)
    plt.show()
transfer_learning.py 文件源码 项目:ModelZoo 作者: NervanaSystems 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def main():
    # Collect the user arguments and hyper parameters
    args, hyper_params = get_args_and_hyperparameters()

    np.set_printoptions( precision=8, suppress=True, edgeitems=6, threshold=2048)

    # setup the CPU or GPU backend
    be = gen_backend(**extract_valid_args(args, gen_backend))

    # load the training dataset. This will download the dataset from the web and cache it
    # locally for subsequent use.
    train_set = MultiscaleSampler('trainval', '2007', samples_per_img=hyper_params.samples_per_img, 
                                 sample_height=224, path=args.data_dir, 
                                 samples_per_batch=hyper_params.samples_per_batch,
                                 max_imgs = hyper_params.max_train_imgs,
                                 shuffle = hyper_params.shuffle)

    # create the model by replacing the classification layer of AlexNet with 
    # new adaptation layers
    model, opt = create_model( args, hyper_params)

    # Seed the Alexnet conv layers with pre-trained weights
    if args.model_file is None and hyper_params.use_pre_trained_weights:
        load_imagenet_weights(model, args.data_dir)

    train( args, hyper_params, model, opt, train_set)

    # Load the test dataset. This will download the dataset from the web and cache it
    # locally for subsequent use.
    test_set = MultiscaleSampler('test', '2007', samples_per_img=hyper_params.samples_per_img, 
                                 sample_height=224, path=args.data_dir, 
                                 samples_per_batch=hyper_params.samples_per_batch,
                                 max_imgs = hyper_params.max_test_imgs,
                                 shuffle = hyper_params.shuffle)
    test( args, hyper_params, model, test_set)

    return

# parse the command line arguments
sketch_rnn_class.py 文件源码 项目:sketch_rnn_classification 作者: payalbajaj 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def trainer(model_params):
  """Train a sketch-rnn model."""
  np.set_printoptions(precision=8, edgeitems=6, linewidth=200, suppress=True)

  tf.logging.info('sketch-rnn')
  tf.logging.info('Hyperparams:')
  for key, val in model_params.values().iteritems():
    tf.logging.info('%s = %s', key, str(val))
  tf.logging.info('Loading data files.')
  datasets = load_dataset(FLAGS.data_dir, model_params)

  train_set = datasets[0]
  valid_set = datasets[1]
  test_set = datasets[2]
  model_params = datasets[3]
  eval_model_params = datasets[4]

  reset_graph()
  model = sketch_rnn_model.Model(model_params)
  eval_model = sketch_rnn_model.Model(eval_model_params, reuse=True)

  sess = tf.InteractiveSession()
  sess.run(tf.global_variables_initializer())

  if FLAGS.resume_training:
    load_checkpoint(sess, FLAGS.log_root)

  # Write config file to json file.
  tf.gfile.MakeDirs(FLAGS.log_root)
  with tf.gfile.Open(
      os.path.join(FLAGS.log_root, 'model_config.json'), 'w') as f:
    json.dump(model_params.values(), f, indent=True)

  train(sess, model, eval_model, train_set, valid_set, test_set)
plot.py 文件源码 项目:geocoder-ie 作者: devgateway 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """

    np.set_printoptions(precision=2)
    plt.figure()
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        logger.info("Normalized confusion matrix")
    else:
        logger.info('Confusion matrix, without normalization')

    logger.info(cm)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()
linearcorex.py 文件源码 项目:LinearCorex 作者: gregversteeg 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, n_hidden=10, max_iter=10000, tol=1e-5, anneal=True, missing_values=None,
                 discourage_overlap=True, gaussianize='standard', gpu=False,
                 verbose=False, seed=None):
        self.m = n_hidden  # Number of latent factors to learn
        self.max_iter = max_iter  # Number of iterations to try
        self.tol = tol  # Threshold for convergence
        self.anneal = anneal
        self.eps = 0  # If anneal is True, it's adjusted during optimization to avoid local minima
        self.missing_values = missing_values

        self.discourage_overlap = discourage_overlap  # Whether or not to discourage overlapping latent factors
        self.gaussianize = gaussianize  # Preprocess data: 'standard' scales to zero mean and unit variance
        self.gpu = gpu  # Enable GPU support for some large matrix multiplications.
        if self.gpu:
            cm.cublas_init()

        self.yscale = 1.  # Can be arbitrary, but sets the scale of Y
        np.random.seed(seed)  # Set seed for deterministic results
        self.verbose = verbose
        if verbose:
            np.set_printoptions(precision=3, suppress=True, linewidth=160)
            print(('Linear CorEx with {:d} latent factors'.format(n_hidden)))

        # Initialize these when we fit on data
        self.n_samples, self.nv = 0, 0  # Number of samples/variables in input data
        self.ws = np.zeros((0, 0))  # m by nv array of weights
        self.moments = {}  # Dictionary of moments
        self.theta = None  # Parameters for preprocessing each variable
        self.history = {}  # Keep track of values for each iteration
        self.last_update = 0  # Used for momentum methods


问题


面经


文章

微信
公众号

扫码关注公众号