python类amax()的实例源码

pykdtree.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, data, leafsize=10):
        """Construct a kd-tree.

        Parameters:
        ===========

        data : array-like, shape (n,k)
            The data points to be indexed. This array is not copied, and
            so modifying this data will result in bogus results.
        leafsize : positive integer
            The number of points at which the algorithm switches over to
            brute-force.
        """
        self.data = np.asarray(data)
        self.n, self.m = np.shape(self.data)
        self.leafsize = int(leafsize)
        if self.leafsize<1:
            raise ValueError("leafsize must be at least 1")
        self.maxes = np.amax(self.data,axis=0)
        self.mins = np.amin(self.data,axis=0)

        self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)
ShowTrace.py 文件源码 项目:GY-91_and_PiCamera_RaspberryPi 作者: mikechan0731 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def generate_dist_per_sec(self):
        time_end= int(np.amax(self.raw_data['time']))

        #===== acc =====
        #??? x, y ????????????????????????
        ax_interp_10ms = self.acc_normalize(np.interp(np.arange(0.0,time_end,0.01), self.raw_data['time'], self.raw_data['ax']))
        ay_interp_10ms = self.acc_normalize(np.interp(np.arange(0.0,time_end,0.01), self.raw_data['time'], self.raw_data['ay']))
        rxy_interp_10ms = np.sqrt(ax_interp_10ms**2 + ay_interp_10ms**2)

        plt.plot(ax_interp_10ms, c='b')
        plt.plot(ay_interp_10ms, c='g')
        plt.plot(self.detrend_1d(rxy_interp_10ms, time_lst=np.arange(0.0,time_end,0.01)), c='k')

        plt.show()

        axy, vxy, sxy = self.another_integral(rxy_interp_10ms, time_lst= np.arange(0.0,time_end,0.01))
        return axy, vxy, sxy
pose_dataset.py 文件源码 项目:tf-openpose 作者: ildoonet 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_heatmap(self, target_size):
        heatmap = np.zeros((CocoMetadata.__coco_parts, self.height, self.width))

        for joints in self.joint_list:
            for idx, point in enumerate(joints):
                if point[0] < 0 or point[1] < 0:
                    continue
                CocoMetadata.put_heatmap(heatmap, idx, point, self.sigma)

        heatmap = heatmap.transpose((1, 2, 0))

        # background
        heatmap[:, :, -1] = np.clip(1 - np.amax(heatmap, axis=2), 0.0, 1.0)

        if target_size:
            heatmap = cv2.resize(heatmap, target_size, interpolation=cv2.INTER_AREA)

        return heatmap
utils.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def diagonal(_, pos):
    """
    Given an object pixels' positions, return the diagonal length of its
    bound box
    :param _: pixel values (unused)
    :param pos: pixel position (1-D)
    :return: diagonal of bounding box
    """
    xs = np.array([i / SSIZE for i in pos])
    ys = np.array([i % SSIZE for i in pos])
    minx = np.amin(xs)
    miny = np.amin(ys)
    maxx = np.amax(xs)
    maxy = np.amax(ys)
    return compute_line(np.array([minx, miny]), np.array([maxx, maxy]))
data_converter.py 文件源码 项目:AutoML5 作者: djajetic 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def binarization (array):
    ''' Takes a binary-class datafile and turn the max value (positive class) into 1 and the min into 0'''
    array = np.array(array, dtype=float) # conversion needed to use np.inf after
    if len(np.unique(array)) > 2:
        raise ValueError ("The argument must be a binary-class datafile. {} classes detected".format(len(np.unique(array))))

    # manipulation which aims at avoid error in data with for example classes '1' and '2'.
    array[array == np.amax(array)] = np.inf
    array[array == np.amin(array)] = 0
    array[array == np.inf] = 1
    return np.array(array, dtype=int)
general_utils.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_all_close(name, actual, expected):
    if actual.shape != expected.shape:
        raise ValueError("{:} failed, expected output to have shape {:} but has shape {:}"
                         .format(name, expected.shape, actual.shape))
    if np.amax(np.fabs(actual - expected)) > 1e-6:
        raise ValueError("{:} failed, expected {:} but value is {:}".format(name, expected, actual))
    else:
        print(name, "passed!")
bench_stats.py 文件源码 项目:composability_bench 作者: IntelPython 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def bench_on(runner, sym, Ns, trials, dtype=None):
    global args, kernel, out, mkl_layer
    prepare = globals().get("prepare_"+sym, prepare_default)
    kernel  = globals().get("kernel_"+sym, None)
    if not kernel:
       kernel = getattr(np.linalg, sym)
    out_lvl = runner.__doc__.split('.')[0].strip()
    func_s  = kernel.__doc__.split('.')[0].strip()
    log.debug('Preparing input data for %s (%s).. ' % (sym, func_s))
    args = [prepare(int(i)) for i in Ns]
    it = range(len(Ns))
    # pprint(Ns)
    out = np.empty(shape=(len(Ns), trials))
    b = body(trials)
    tic, toc = (0, 0)
    log.debug('Warming up %s (%s).. ' % (sym, func_s))
    runner(range(1000), empty_work)
    kernel(*args[0])
    runner(range(1000), empty_work)
    log.debug('Benchmarking %s on %s: ' % (func_s, out_lvl))
    gc_old = gc.isenabled()
#    gc.disable()
    tic = time.time()
    runner(it, b)
    toc = time.time() - tic
    if gc_old:
        gc.enable()
    if 'reused_pool' in globals():
        del globals()['reused_pool']

    #calculate average time and min time and also keep track of outliers (max time in the loop)
    min_time = np.amin(out)
    max_time = np.amax(out)
    mean_time = np.mean(out)
    stdev_time = np.std(out)

    #print("Min = %.5f, Max = %.5f, Mean = %.5f, stdev = %.5f " % (min_time, max_time, mean_time, stdev_time))
    #final_times = [min_time, max_time, mean_time, stdev_time]

    print('## %s: Outter:%s, Inner:%s, Wall seconds:%f\n' % (sym, out_lvl, mkl_layer, float(toc)))
    return out
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def view_trigger_snippets(trigger_snippets, chans, save=None):
    # Create output directory if necessary.
    if os.path.exists(save):
        for f in os.listdir(save):
            p = os.path.join(save, f)
            os.remove(p)
        os.removedirs(save)
    os.makedirs(save)
    # Plot figures.
    fig = pylab.figure()
    for (c, chan) in enumerate(chans):
        ax = fig.add_subplot(1, 1, 1)
        for n in xrange(0, trigger_snippets.shape[2]):
            y = trigger_snippets[:, c, n]
            x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
            b = 0.5 + 0.5 * numpy.random.rand()
            ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
        y = numpy.mean(trigger_snippets[:, c, :], axis=1)
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        ax.plot(x, y, color=(1.0, 0.0, 0.0), linestyle='solid')
        ax.grid(True)
        ax.set_xlim([numpy.amin(x), numpy.amax(x)])
        ax.set_title("Channel %d" %chan)
        ax.set_xlabel("time")
        ax.set_ylabel("amplitude")
        if save is not None:
            # Save plot.
            filename = "channel-%d.png" %chan
            path = os.path.join(save, filename)
            pylab.savefig(path)
        fig.clf()
    if save is None:
        pylab.show()
    else:
        pylab.close(fig)
    return
unet_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def process_scans(scans):  # used for tesing
    scans1=np.zeros((scans.shape[0],1,img_rows,img_cols))
    for i in range(scans.shape[0]):
        img=scans[i,:,:]
        img = 255.0 / np.amax(img) * img
        img =img.astype(np.uint8)
        img =cv2.resize(img, (img_rows, img_cols))
        scans1[i,0,:,:]=img
    return (scans1)
logoSet.py 文件源码 项目:vehicle_brand_classification_CNN 作者: nanoc812 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def imgSeg_logo(approx, himg, wimg):
    w = np.amax(approx[:,:,0])-np.amin(approx[:,:,0]); h = np.amax(approx[:,:,1])-np.amin(approx[:,:,1])
    if float(w)/float(h+0.001) > 4.5:
        h = int(float(w)/3.5)
    w0 = np.amin(approx[:,:,0]); h0 = np.amin(approx[:,:,1])
    h1 = h0-int(3.5*h); h2 = h0;
    w1 = max(w0+w/2-int(0.5*(h2-h1)), 0); w2 = min(w0+w/2+int(0.5*(h2-h1)), wimg-1)
    return h1, h2, w1, w2
logoSet.py 文件源码 项目:vehicle_brand_classification_CNN 作者: nanoc812 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def imgSeg_rect(approx, himg, wimg):
    w = np.amax(approx[:,:,0])-np.amin(approx[:,:,0]); h = np.amax(approx[:,:,1])-np.amin(approx[:,:,1])
    if float(w)/float(h+0.001) > 4.5:
        h = int(float(w)/3.5)
    w0 = np.amin(approx[:,:,0]); h0 = np.amin(approx[:,:,1])
    h1 = h0-int(3.6*h); h2 = min(h0+int(3*h), himg-1)
    w1 = max(w0+w/2-(h2-h1), 0); w2 = min(w0+w/2+(h2-h1), wimg-1)
    return h1, h2, w1, w2
rn_lab_test.py 文件源码 项目:ml 作者: hohoins 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rarmax(vector):
    m = np.amax(vector)
    indices = np.nonzero(vector == m) [0]
    return pr.choice(indices)
indoor3d_util.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def collect_bounding_box(anno_path, out_filename):
    """ Compute bounding boxes from each instance in original dataset files on
        one room. **We assume the bbox is aligned with XYZ coordinate.**

    Args:
        anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
        out_filename: path to save instance bounding boxes for that room.
            each line is x1 y1 z1 x2 y2 z2 label,
            where (x1,y1,z1) is the point on the diagonal closer to origin
    Returns:
        None
    Note:
        room points are shifted, the most negative point is now at origin.
    """
    bbox_label_list = []

    for f in glob.glob(os.path.join(anno_path, '*.txt')):
        cls = os.path.basename(f).split('_')[0]
        if cls not in g_classes: # note: in some room there is 'staris' class..
            cls = 'clutter'
        points = np.loadtxt(f)
        label = g_class2label[cls]
        # Compute tightest axis aligned bounding box
        xyz_min = np.amin(points[:, 0:3], axis=0)
        xyz_max = np.amax(points[:, 0:3], axis=0)
        ins_bbox_label = np.expand_dims(
            np.concatenate([xyz_min, xyz_max, np.array([label])], 0), 0)
        bbox_label_list.append(ins_bbox_label)

    bbox_label = np.concatenate(bbox_label_list, 0)
    room_xyz_min = np.amin(bbox_label[:, 0:3], axis=0)
    bbox_label[:, 0:3] -= room_xyz_min 
    bbox_label[:, 3:6] -= room_xyz_min 

    fout = open(out_filename, 'w')
    for i in range(bbox_label.shape[0]):
        fout.write('%f %f %f %f %f %f %d\n' % \
                      (bbox_label[i,0], bbox_label[i,1], bbox_label[i,2],
                       bbox_label[i,3], bbox_label[i,4], bbox_label[i,5],
                       bbox_label[i,6]))
    fout.close()
utils.py 文件源码 项目:aapm_thoracic_challenge 作者: xf4j 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def clean_contour(in_contour, is_prob=False):
    if is_prob:
        pred = (in_contour >= 0.5).astype(np.float32)
    else:
        pred = in_contour
    labels = measure.label(pred)
    area = []
    for l in range(1, np.amax(labels) + 1):
        area.append(np.sum(labels == l))
    out_contour = in_contour
    out_contour[np.logical_and(labels > 0, labels != np.argmax(area) + 1)] = 0
    return out_contour
utils.py 文件源码 项目:aapm_thoracic_challenge 作者: xf4j 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def read_testing_inputs(file, roi, im_size, output_path=None):
    f_h5 = h5py.File(file, 'r')
    if roi == -1:
        images = np.asarray(f_h5['resized_images'], dtype=np.float32)
        read_info = {}
        read_info['shape'] = np.asarray(f_h5['images'], dtype=np.float32).shape
    else:
        images = np.asarray(f_h5['images'], dtype=np.float32)
        output = h5py.File(os.path.join(output_path, 'All_' + os.path.basename(file)), 'r')
        predictions = np.asarray(output['predictions'], dtype=np.float32)
        output.close()
        # Select the roi
        roi_labels = (predictions == roi + 1).astype(np.float32)
        nz = np.nonzero(roi_labels)
        extract = []
        for c in range(3):
            start = np.amin(nz[c])
            end = np.amax(nz[c])
            r = end - start
            extract.append((np.maximum(int(np.rint(start - r * 0.1)), 0),
                            np.minimum(int(np.rint(end + r * 0.1)), images.shape[c])))

        extract_images = images[extract[0][0] : extract[0][1], extract[1][0] : extract[1][1], extract[2][0] : extract[2][1]]
        read_info = {}
        read_info['shape'] = images.shape
        read_info['extract_shape'] = extract_images.shape
        read_info['extract'] = extract

        images = resize(extract_images, im_size, mode='constant')

    f_h5.close()
    return images, read_info
image.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def normalize(im):
  mini = np.amin(im)
  maxi = np.amax(im)
  rng = maxi-mini
  im -= mini
  if rng > 0:
    im /= rng
  return im


# ----- Type transformations --------------------------------------------------
ops_test.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_interpolate(self):
    for dev in ['/gpu:0']:
      batch_size = 3
      h = 3
      w = 4
      d = 3
      grid_shape = [batch_size, h, w, d, 1]
      grid_data = np.zeros(grid_shape).astype(np.float32)
      grid_data[:, :, :, 1 :] = 1.0
      grid_data[:, :, :, 2 :] = 2.0

      guide_shape = [batch_size, 5, 9]
      target_shape = [batch_size, 5, 9, 1]

      for val in range(d):
        target_data = val*np.ones(target_shape)
        target_data = target_data.astype(np.float32)

        guide_data = ((val+0.5)/(1.0*d))*np.ones(guide_shape).astype(np.float32)
        output_data = self.run_bilateral_slice(dev, grid_data, guide_data)
        diff = np.amax(np.abs(target_data-output_data))


        self.assertEqual(target_shape, list(output_data.shape))

        self.assertLess(diff, 5e-4)
image_gen.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def to_rgb(img):
    img = img.reshape(img.shape[0], img.shape[1])
    img[np.isnan(img)] = 0
    img -= np.amin(img)
    img /= np.amax(img)
    blue = np.clip(4*(0.75-img), 0, 1)
    red  = np.clip(4*(img-0.25), 0, 1)
    green= np.clip(44*np.fabs(img-0.5)-1., 0, 1)
    rgb = np.stack((red, green, blue), axis=2)
    return rgb
image_util.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _process_data(self, data):
        # normalization
        data = np.clip(np.fabs(data), self.a_min, self.a_max)
        data -= np.amin(data)
        data /= np.amax(data)
        return data
util.py 文件源码 项目:lung-cancer-detector 作者: YichenGong 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_prediction(x_test, y_test, prediction, save=False):
    import matplotlib
    import matplotlib.pyplot as plt

    test_size = x_test.shape[0]
    fig, ax = plt.subplots(test_size, 3, figsize=(12,12), sharey=True, sharex=True)

    x_test = crop_to_shape(x_test, prediction.shape)
    y_test = crop_to_shape(y_test, prediction.shape)

    ax = np.atleast_2d(ax)
    for i in range(test_size):
        cax = ax[i, 0].imshow(x_test[i])
        plt.colorbar(cax, ax=ax[i,0])
        cax = ax[i, 1].imshow(y_test[i, ..., 1])
        plt.colorbar(cax, ax=ax[i,1])
        pred = prediction[i, ..., 1]
        pred -= np.amin(pred)
        pred /= np.amax(pred)
        cax = ax[i, 2].imshow(pred)
        plt.colorbar(cax, ax=ax[i,2])
        if i==0:
            ax[i, 0].set_title("x")
            ax[i, 1].set_title("y")
            ax[i, 2].set_title("pred")
    fig.tight_layout()

    if save:
        fig.savefig(save)
    else:
        fig.show()
        plt.show()


问题


面经


文章

微信
公众号

扫码关注公众号