python类log10()的实例源码

hparams_search.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def sample_hparams():
    hparams = {}
    for k, sample_range in ranges.items():
        if isinstance(sample_range, (LogRange, LinearRange)):
            if isinstance(sample_range[0], int):
                # LogRange not valid for ints
                hparams[k] = random.randint(sample_range[0], sample_range[1])
            elif isinstance(sample_range[0], float):
                start, end = sample_range
                if isinstance(sample_range, LogRange):
                    start, end = np.log10(start), np.log10(end)

                choice = np.random.uniform(start, end)
                if isinstance(sample_range, LogRange):
                    choice = np.exp(choice)
                hparams[k] = choice
    return hparams
hparams_search.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def sample_hparams():
    hparams = {}
    for k, sample_range in ranges.items():
        if isinstance(sample_range, (LogRange, LinearRange)):
            if isinstance(sample_range[0], int):
                # LogRange not valid for ints
                hparams[k] = random.randint(sample_range[0], sample_range[1])
            elif isinstance(sample_range[0], float):
                start, end = sample_range
                if isinstance(sample_range, LogRange):
                    start, end = np.log10(start), np.log10(end)

                choice = np.random.uniform(start, end)
                if isinstance(sample_range, LogRange):
                    choice = np.exp(choice)
                hparams[k] = choice
    return hparams
hparams_search.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def sample_hparams():
    hparams = {}
    for k, sample_range in ranges.items():
        if isinstance(sample_range, (LogRange, LinearRange)):
            if isinstance(sample_range[0], int):
                # LogRange not valid for ints
                hparams[k] = random.randint(sample_range[0], sample_range[1])
            elif isinstance(sample_range[0], float):
                start, end = sample_range
                if isinstance(sample_range, LogRange):
                    start, end = np.log10(start), np.log10(end)

                choice = np.random.uniform(start, end)
                if isinstance(sample_range, LogRange):
                    choice = np.exp(choice)
                hparams[k] = choice
    return hparams
hparams_search.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def sample_hparams():
    hparams = {}
    for k, sample_range in ranges.items():
        if isinstance(sample_range, (LogRange, LinearRange)):
            if isinstance(sample_range[0], int):
                # LogRange not valid for ints
                hparams[k] = random.randint(sample_range[0], sample_range[1])
            elif isinstance(sample_range[0], float):
                start, end = sample_range
                if isinstance(sample_range, LogRange):
                    start, end = np.log10(start), np.log10(end)

                choice = np.random.uniform(start, end)
                if isinstance(sample_range, LogRange):
                    choice = np.exp(choice)
                hparams[k] = choice
    return hparams
hparams_search.py 文件源码 项目:human-rl 作者: gsastry 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def sample_hparams():
    hparams = {}
    for k, sample_range in ranges.items():
        if isinstance(sample_range, (LogRange, LinearRange)):
            if isinstance(sample_range[0], int):
                # LogRange not valid for ints
                hparams[k] = random.randint(sample_range[0], sample_range[1])
            elif isinstance(sample_range[0], float):
                start, end = sample_range
                if isinstance(sample_range, LogRange):
                    start, end = np.log10(start), np.log10(end)

                choice = np.random.uniform(start, end)
                if isinstance(sample_range, LogRange):
                    choice = np.exp(choice)
                hparams[k] = choice
    return hparams
data_preparation.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def compHistDistance(h1, h2):
  def normalize(h):    
    if np.sum(h) == 0: 
        return h
    else:
        return h / np.sum(h)

  def smoothstep(x, x_min=0., x_max=1., k=2.):
      m = 1. / (x_max - x_min)
      b = - m * x_min
      x = m * x + b
      return betainc(k, k, np.clip(x, 0., 1.))

  def fn(X, Y, k):
    return 4. * (1. - smoothstep(Y, 0, (1 - Y) * X + Y + .1)) \
      * np.sqrt(2 * X) * smoothstep(X, 0., 1. / k, 2) \
             + 2. * smoothstep(Y, 0, (1 - Y) * X + Y + .1) \
             * (1. - 2. * np.sqrt(2 * X) * smoothstep(X, 0., 1. / k, 2) - 0.5)

  h1 = normalize(h1)
  h2 = normalize(h2)

  return max(0, np.sum(fn(h2, h1, len(h1))))
  # return np.sum(np.where(h2 != 0, h2 * np.log10(h2 / (h1 + 1e-10)), 0))  # KL divergence
ImageView.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def export(self, fileName):
        """
        Export data from the ImageView to a file, or to a stack of files if
        the data is 3D. Saving an image stack will result in index numbers
        being added to the file name. Images are saved as they would appear
        onscreen, with levels and lookup table applied.
        """
        img = self.getProcessedImage()
        if self.hasTimeAxis():
            base, ext = os.path.splitext(fileName)
            fmt = "%%s%%0%dd%%s" % int(np.log10(img.shape[0])+1)
            for i in range(img.shape[0]):
                self.imageItem.setImage(img[i], autoLevels=False)
                self.imageItem.save(fmt % (base, i, ext))
            self.updateImage()
        else:
            self.imageItem.save(fileName)
AxisItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def logTickValues(self, minVal, maxVal, size, stdTicks):

        ## start with the tick spacing given by tickValues().
        ## Any level whose spacing is < 1 needs to be converted to log scale

        ticks = []
        for (spacing, t) in stdTicks:
            if spacing >= 1.0:
                ticks.append((spacing, t))

        if len(ticks) < 3:
            v1 = int(np.floor(minVal))
            v2 = int(np.ceil(maxVal))
            #major = list(range(v1+1, v2))

            minor = []
            for v in range(v1, v2):
                minor.extend(v + np.log10(np.arange(1, 10)))
            minor = [x for x in minor if x>minVal and x<maxVal]
            ticks.append((None, minor))
        return ticks
ImageView.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def export(self, fileName):
        """
        Export data from the ImageView to a file, or to a stack of files if
        the data is 3D. Saving an image stack will result in index numbers
        being added to the file name. Images are saved as they would appear
        onscreen, with levels and lookup table applied.
        """
        img = self.getProcessedImage()
        if self.hasTimeAxis():
            base, ext = os.path.splitext(fileName)
            fmt = "%%s%%0%dd%%s" % int(np.log10(img.shape[0])+1)
            for i in range(img.shape[0]):
                self.imageItem.setImage(img[i], autoLevels=False)
                self.imageItem.save(fmt % (base, i, ext))
            self.updateImage()
        else:
            self.imageItem.save(fileName)
parse_hh0_data.py 文件源码 项目:hh0 作者: sfeeney 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def riess_sn_fit(app_mag_s, app_mag_err_s, z_s, sig_int_s):

    # helpful parameters. only fitting an intercept here
    n_s = len(app_mag_s)
    n_obs = n_s
    n_par = 1
    y_vec = np.zeros(n_obs)
    l_mat = np.zeros((n_obs, n_par))
    c_mat_inv = np.zeros((n_obs, n_obs))

    # loop through SNe
    k = 0
    for i in range(0, n_s):
        y_vec[k] = np.log10(z2d(z_s[i])) - 0.2 * app_mag_s[i]
        l_mat[k, 0] = 1.0
        c_mat_inv[k, k] = 1.0 / 0.2 ** 2 / \
                          (app_mag_err_s[i] ** 2 + sig_int_s ** 2)
        k += 1

    # fit, calculate residuals in useable form and return
    ltci = np.dot(l_mat.transpose(), c_mat_inv)
    q_hat_cov = np.linalg.inv(np.dot(ltci, l_mat))
    q_hat = np.dot(np.dot(q_hat_cov, ltci), y_vec)
    res = y_vec - np.dot(l_mat, q_hat)
    return q_hat, np.sqrt(np.diag(q_hat_cov)), res
sweetcat.py 文件源码 项目:SWEETer-Cat 作者: DanielAndreasen 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def absolute_magnitude(parallax, m):
    """Calculate the absolute magnitude based on distance and apparent mag.
    Inputs
    ------
    parallax : float
      The parallax in mas
    m : float
      The apparent magnitude

    Output
    ------
    M : float
      The absolute magnitude
    """
    d = 1. / (parallax*1e-3)  # Conversion to arcsecond before deriving distance
    mu = 5 * np.log10(d) - 5
    M = m - mu
    return M
utils.py 文件源码 项目:SWEETer-Cat 作者: DanielAndreasen 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def absolute_magnitude(parallax, m):
    """Calculate the absolute magnitude based on distance and apparent mag.
    Inputs
    ------
    parallax : float
      The parallax in mas
    m : float
      The apparent magnitude

    Output
    ------
    M : float
      The absolute magnitude
    """
    d = 1. / (parallax*1e-3)  # Conversion to arcsecond before deriving distance
    mu = 5 * np.log10(d) - 5
    M = m - mu
    return M
Sol_Analysis.py 文件源码 项目:BISIP 作者: clberube 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def plot_mean_debye(sol, ax):
    x = np.log10(sol[0]["data"]["tau"])
    x = np.linspace(min(x), max(x),100)
    list_best_rtd = [100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0) for s in sol]
#    list_best_rtd = [s["fit"]["best"] for s in sol]
    y = np.mean(list_best_rtd, axis=0)
    y_min = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] - sol[0]["params"]["a_std"])], axis=0)
    y_max = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] + sol[0]["params"]["a_std"])], axis=0)
    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='blue',linewidth=2, label="Mean RTD", zorder=10)
    plt.plot(10**x[(x>-6)&(x<2)], y_min[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1, label="RTD range")
    plt.plot(10**x[(x>-6)&(x<2)], y_max[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1)
    plt.fill_between(sol[0]["data"]["tau"], 100*(sol[0]["params"]["m_"]-sol[0]["params"]["m__std"])  , 100*(sol[0]["params"]["m_"]+sol[0]["params"]["m__std"]), color='lightgray', alpha=1, zorder=-1, label="RTD SD")

    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
    ax.legend(loc=1, fontsize=12)
#    ax.set_title(title+" step method", fontsize=14)
op_utils.py 文件源码 项目:KATE 作者: hugochan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def vecnorm(vec, norm, epsilon=1e-3):
    """
    Scale a vector to unit length. The only exception is the zero vector, which
    is returned back unchanged.
    """
    if norm not in ('prob', 'max1', 'logmax1'):
        raise ValueError("'%s' is not a supported norm. Currently supported norms include 'prob',\
             'max1' and 'logmax1'." % norm)

    if isinstance(vec, np.ndarray):
        vec = np.asarray(vec, dtype=float)
        if norm == 'prob':
            veclen = np.sum(np.abs(vec)) + epsilon * len(vec) # smoothing
        elif norm == 'max1':
            veclen = np.max(vec) + epsilon
        elif norm == 'logmax1':
            vec = np.log10(1. + vec)
            veclen = np.max(vec) + epsilon
        if veclen > 0.0:
            return (vec + epsilon) / veclen
        else:
            return vec
    else:
        raise ValueError('vec should be ndarray, found: %s' % type(vec))
plot.py 文件源码 项目:sound_field_analysis-py 作者: QULab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def normalizeMTX(MTX, logScale=False):
    """ Normalizes a matrix to [0 ... 1]

    Parameters
    ----------
    MTX : array_like
       Matrix to be normalized
    logScale : bool
       Toggle conversion logScale [Default: False]

    Returns
    -------
    MTX : array_liked
       Normalized Matrix
    """
    MTX -= MTX.min()
    MTX /= MTX.max()

    if logScale:
        MTX += 0.00001
        MTX = _np.log10(_np.abs(MTX))
        MTX += 5
        MTX /= 5.000004343
        # MTX = 20 * _np.log10(_np.abs(MTX))
    return MTX
utils.py 文件源码 项目:sound_field_analysis-py 作者: QULab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def db(data, power=False):
    '''Convenience function to calculate the 20*log10(abs(x))

    Parameters
    ----------
    data : array_like
       signals to be converted to db
    power : boolean
       data is a power signal and only needs factor 10

    Returns
    -------
    db : array_like
       20 * log10(abs(data))
    '''
    if power:
        factor = 10
    else:
        factor = 20
    return factor * np.log10(np.abs(data))
point_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        d1len = len(self.data1[t1])
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[self.data1[t1]]
            t2_rep = self.embed[self.data2[t2]]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
list_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
pair_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            curr_pair_feats = list(self.hist_feats[(t1, t2)])
            caled_hist = np.reshape(curr_pair_feats, (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
list_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
pair_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            curr_pair_feats = list(self.hist_feats[(t1, t2)])
            caled_hist = np.reshape(curr_pair_feats, (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
pySLUtilities.py 文件源码 项目:pyshearlab 作者: stefanloock 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def SLcomputePSNR(X, Xnoisy):
    """
    SLcomputePSNR Compute peak signal to noise ratio (PSNR).

    Usage:

        PSNR = SLcomputePSNR(X, Xnoisy)

    Input:

        X:      2D or 3D signal.
        Xnoisy: 2D or 3D noisy signal.

    Output:

        PSNR: The peak signal to noise ratio (in dB).
    """

    MSEsqrt = np.linalg.norm(X-Xnoisy) / np.sqrt(X.size)
    if MSEsqrt == 0:
        return np.inf
    else:
        return 20 * np.log10(255 / MSEsqrt)
pySLUtilities.py 文件源码 项目:pyshearlab 作者: stefanloock 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def SLcomputeSNR(X, Xnoisy):
    """
    SLcomputeSNR Compute signal to noise ratio (SNR).

    Usage:

        SNR = SLcomputeSNR(X, Xnoisy)

    Input:

        X:      2D or 3D signal.
        Xnoisy: 2D or 3D noisy signal.

    Output:

        SNR: The signal to noise ratio (in dB).
    """

    if np.linalg.norm(X-Xnoisy) == 0:
        return np.Inf
    else:
        return 10 * np.log10( np.sum(np.power(X,2)) / np.sum(np.power(X-Xnoisy,2)) )
randpoints.py 文件源码 项目:atoolbox 作者: liweitianux 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def generate(self, n=1):
        """
        Generate a sample of luminosity values within [min, max] from
        the above luminosity distribution.
        """
        results = []
        # Get the maximum value of the flux number density function,
        # which is a monotonically decreasing.
        M = self.fluxDensity(self.fmin)
        for i in range(n):
            while True:
                u = np.random.uniform() * M
                y = 10 ** np.random.uniform(low=np.log10(self.fmin),
                        high=np.log10(self.fmax))
                if u <= self.fluxDensity(y):
                    results.append(y)
                    break
        return results
pyPPPETM_new.py 文件源码 项目:Parallel.GAMIT 作者: demiangomez 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def eval(self, t):
        # given a time vector t, return the design matrix column vector(s)

        if self.type is None:
            return np.array([])

        hl = np.zeros((t.shape[0],))
        ht = np.zeros((t.shape[0],))

        if self.type in (0,2):
            hl[t >= self.year] = np.log10(1 + (t[t >= self.year] - self.year) / self.T)

        if self.type in (1,2):
            ht[t >= self.year] = 1

        return np.append(ht,hl) if np.any(hl) else ht
MT.py 文件源码 项目:em_examples 作者: geoscixyz 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def PlotAppRes3Layers_wrapper(fmin, fmax, nbdata, h1, h2, rhol1, rhol2, rhol3, mul1, mul2, mul3, epsl1, epsl2, epsl3, PlotEnvelope, F_Envelope):

    frangn=frange(np.log10(fmin), np.log10(fmax), nbdata)
    sig3= np.array([0., 0.001, 0.1, 0.001])
    thick3 = np.array([120000., 50., 50.])
    eps3=np.array([1., 1., 1., 1])
    mu3=np.array([1., 1., 1., 1])
    chg3=np.array([0., 0.1, 0., 0.2])
    chg3_0=np.array([0., 0.1, 0., 0.])
    taux3=np.array([0., 0.1, 0., 0.1])
    c3=np.array([1., 1., 1., 1.])

    sig3[1]=1./rhol1
    sig3[2]=1./rhol2
    sig3[3]=1./rhol3
    mu3[1]=mul1
    mu3[2]=mul2
    mu3[3]=mul3
    eps3[1]=epsl1
    eps3[2]=epsl2
    eps3[3]=epsl3
    thick3[1]=h1
    thick3[2]=h2

    PlotAppRes(frangn, thick3, sig3, chg3_0, taux3, c3, mu3, eps3, 3, F_Envelope, PlotEnvelope)
massfunctions.py 文件源码 项目:NDpredict 作者: sawellons 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def quenchedfrac_zfourge(M, z):
    par_q1, par_q2 = zfourgeparams(z, type='quiescent')
    x_q1 = 10.**(M-par_q1[1])
    dn_q1 = np.log10(np.log(10)*np.exp(-1.*x_q1)*x_q1*(10.**par_q1[3]*x_q1**(par_q1[2]) + 10.**(par_q1[5])*x_q1**(par_q1[4])))
    x_q2 = 10.**(M-par_q2[1])
    dn_q2 = np.log10(np.log(10)*np.exp(-1.*x_q2)*x_q2*(10.**par_q2[3]*x_q2**(par_q2[2]) + 10.**(par_q2[5])*x_q2**(par_q2[4])))

    par_sf1, par_sf2 = zfourgeparams(z, type='star-forming')
    x_sf1 = 10.**(M-par_sf1[1])
    dn_sf1 = np.log10(np.log(10)*np.exp(-1.*x_sf1)*x_sf1*(10.**par_sf1[3]*x_sf1**(par_sf1[2]) + 10.**(par_sf1[5])*x_sf1**(par_sf1[4])))
    x_sf2 = 10.**(M-par_sf2[1])
    dn_sf2 = np.log10(np.log(10)*np.exp(-1.*x_sf2)*x_sf2*(10.**par_sf2[3]*x_sf2**(par_sf2[2]) + 10.**(par_sf2[5])*x_sf2**(par_sf2[4])))

    fq1 = 10.**dn_q1/(10.**dn_q1+10.**dn_sf1)
    fq2 = 10.**dn_q2/(10.**dn_q2+10.**dn_sf2)

    return (fq1*(par_q2[0]-z)+fq2*(z-par_q1[0]))/(par_q2[0]-par_q1[0])

# ------ OBSOLETE, left in for backwards-compatibility ------ #
HMM.py 文件源码 项目:Poccala 作者: Byshx 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __scale_coefficient(self, result, result_index, t, sum_log=False):
        """
        ?????
        :param result:????
        :param result_index:??????
        :param t: ??????
        :param sum_log: ??c_coefficient???
        :return: 
        """
        sum_column = np.sum(result[result_index][:, t], axis=0)
        if sum_column == 0.:
            result[result_index][:, t] = 1. / len(self.__states)
            sum_column = 1.
        result[result_index][:, t] /= sum_column
        if sum_log:
            self.__c_coefficient += math.log10(sum_column)
densetimes.py 文件源码 项目:MOSFiT 作者: guillochon 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def process(self, **kwargs):
        """Process module."""
        self._rest_times = kwargs['rest_times']
        self._rest_t_explosion = kwargs[self.key('resttexplosion')]

        outputs = OrderedDict()
        max_times = max(self._rest_times)
        if max_times > self._rest_t_explosion:
            outputs['dense_times'] = np.unique(
                np.concatenate(([0.0], [
                    x + self._rest_t_explosion
                    for x in np.logspace(
                        self.L_T_MIN,
                        np.log10(max_times - self._rest_t_explosion),
                        num=self._n_times)
                ], self._rest_times)))
        else:
            outputs['dense_times'] = np.array(self._rest_times)
        outputs['dense_indices'] = np.searchsorted(
            outputs['dense_times'], self._rest_times)
        return outputs
volcano.py 文件源码 项目:pysciencedock 作者: Kitware 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def volcano(data):
    if len(data.index.levels[1]) != 2:
        raise Exception('Volcano requires secondary index with two values')

    indexA, indexB = data.index.levels[1]

    dataA = data.xs(indexA, level=1)
    dataB = data.xs(indexB, level=1)

    meanA = dataA.mean(axis=0)
    meanB = dataB.mean(axis=0)

    change = meanB.div(meanA)

    statistic, pvalues = ttest_ind(dataA, dataB)

    pvalues = pd.DataFrame(
        [statistic, pvalues, -np.log10(pvalues), change, np.log2(change)],
        columns=data.columns,
        index=['t', 'p', '-log10(p)', 'foldchange', 'log2(foldchange)']).transpose()

    return pvalues


问题


面经


文章

微信
公众号

扫码关注公众号