python类fromstring()的实例源码

proposal.py 文件源码 项目:odnl 作者: lilhope 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, feat_stride, scales, ratios, output_score,
                 rpn_pre_nms_top_n, rpn_post_nms_top_n, threshold, rpn_min_size):
        super(ProposalOperator, self).__init__()
        self._feat_stride = feat_stride
        self._scales = np.fromstring(scales[1:-1], dtype=float, sep=',')
        self._ratios = np.fromstring(ratios[1:-1], dtype=float, sep=',')
        self._anchors = generate_anchors(base_size=self._feat_stride, scales=self._scales, ratios=self._ratios)
        self._num_anchors = self._anchors.shape[0]
        self._output_score = output_score
        self._rpn_pre_nms_top_n = rpn_pre_nms_top_n
        self._rpn_post_nms_top_n = rpn_post_nms_top_n
        self._threshold = threshold
        self._rpn_min_size = rpn_min_size

        if DEBUG:
            print('feat_stride: {}'.format(self._feat_stride))
            print('anchors:')
            print(self._anchors)
vec2bin.py 文件源码 项目:DeepQA 作者: Conchylicultor 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def vec2bin(input_path, output_path):
    input_fd  = open(input_path, "rb")
    output_fd = open(output_path, "wb")

    header = input_fd.readline()
    output_fd.write(header)

    vocab_size, vector_size = map(int, header.split())

    for line in tqdm(range(vocab_size)):
        word = []
        while True:
            ch = input_fd.read(1)
            output_fd.write(ch)
            if ch == b' ':
                word = b''.join(word).decode('utf-8')
                break
            if ch != b'\n':
                word.append(ch)
        vector = np.fromstring(input_fd.readline(), sep=' ', dtype='float32')
        output_fd.write(vector.tostring())

    input_fd.close()
    output_fd.close()
reader.py 文件源码 项目:Deep-Learning-with-Theano 作者: PacktPublishing 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def enwik8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw Hutter prize data is at:
  http://mattmahoney.net/dc/enwik8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to hutter_iterator.
  """

  data_path = os.path.join(data_path, "enwik8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
reader.py 文件源码 项目:Deep-Learning-with-Theano 作者: PacktPublishing 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def text8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw text8 data is at:
  http://mattmahoney.net/dc/text8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to text8_iterator.
  """

  data_path = os.path.join(data_path, "text8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
process_data.py 文件源码 项目:NCRF-AE 作者: cosmozhang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def load_bin_vec(fname, vocab):
    """
    Loads word vecs from word2vec bin file
    """
    word_vecs = OrderedDict()
    with open(fname, "rb") as f:
        header = f.readline()
        vocab_size, layer1_size = map(int, header.split())
        binary_len = np.dtype('float32').itemsize * layer1_size
        for line in xrange(vocab_size):
            word = []
            while True:
                ch = f.read(1)
                if ch == ' ':
                    word = ''.join(word)
                    break
                if ch != '\n':
                    word.append(ch)
            if word in vocab:
                idx = vocab[word]
                word_vecs[idx] = np.fromstring(f.read(binary_len), dtype='float32')
            else:
                f.read(binary_len)
    return word_vecs
test_item_types_integration.py 文件源码 项目:myreco 作者: dutradda 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_if_items_patch_updates_stock_filter(self, init_db, headers, redis, session, client, api):
        body = [{
            'name': 'test',
            'stores': [{'id': 1}],
            'schema': {'properties': {'id': {'type': 'string'}}, 'type': 'object', 'id_names': ['id']}
        }]
        client = await client
        await client.post('/item_types/', headers=headers, data=ujson.dumps(body))

        body = [{'id': 'test'}]
        resp = await client.post('/item_types/1/items?store_id=1', headers=headers, data=ujson.dumps(body))
        assert resp.status == 201


        test_model = _all_models['store_items_test_1']
        await ItemsIndicesMap(test_model).update(session)

        body = [{'id': 'test', '_operation': 'delete'}]
        resp = await client.patch('/item_types/1/items?store_id=1', headers=headers, data=ujson.dumps(body))
        stock_filter = np.fromstring(await redis.get('store_items_test_1_stock_filter'), dtype=np.bool).tolist()
        assert stock_filter == [False]
color.py 文件源码 项目:pycolor_detection 作者: parth1993 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def predict(self, input_file):

        # img = base64.b64decode(input_base64)
        # img_array = np.fromstring(img, np.uint8)
        # input_file = cv2.imdecode(img_array, 1)

        # ip_converted = preprocessing.resizing(input_base64)
        segmented_image = preprocessing.image_segmentation(
                preprocessing.resizing(input_file)
            )
        # processed_image = preprocessing.removebg(segmented_image)
        detect = pycolor.detect_color(
                segmented_image,
                self._mapping_file
            )
        return (detect)
odometry.py 文件源码 项目:MV3D-Pytorch 作者: dongwoohhh 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_poses(self):
        """Load ground truth poses from file."""
        print('Loading poses for sequence ' + self.sequence + '...')

        pose_file = os.path.join(self.pose_path, self.sequence + '.txt')

        # Read and parse the poses
        try:
            self.T_w_cam0 = []
            with open(pose_file, 'r') as f:
                for line in f.readlines():
                    T = np.fromstring(line, dtype=float, sep=' ')
                    T = T.reshape(3, 4)
                    T = np.vstack((T, [0, 0, 0, 1]))
                    self.T_w_cam0.append(T)
            print('done.')

        except FileNotFoundError:
            print('Ground truth poses are not avaialble for sequence ' +
                  self.sequence + '.')
reader.py 文件源码 项目:RecurrentHighwayNetworks 作者: julian121266 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def enwik8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw Hutter prize data is at:
  http://mattmahoney.net/dc/enwik8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to hutter_iterator.
  """

  data_path = os.path.join(data_path, "enwik8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
reader.py 文件源码 项目:RecurrentHighwayNetworks 作者: julian121266 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def text8_raw_data(data_path=None, num_test_symbols=5000000):
  """Load raw data from data directory "data_path".

  The raw text8 data is at:
  http://mattmahoney.net/dc/text8.zip

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
    num_test_symbols: number of symbols at the end that make up the test set

  Returns:
    tuple (train_data, valid_data, test_data, unique)
    where each of the data objects can be passed to text8_iterator.
  """

  data_path = os.path.join(data_path, "text8")

  raw_data = _read_symbols(data_path)
  raw_data = np.fromstring(raw_data, dtype=np.uint8)
  unique, data = np.unique(raw_data, return_inverse=True)
  train_data = data[: -2 * num_test_symbols]
  valid_data = data[-2 * num_test_symbols: -num_test_symbols]
  test_data = data[-num_test_symbols:]
  return train_data, valid_data, test_data, unique
attract-repel.py 文件源码 项目:attract-repel 作者: nmrksic 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def load_word_vectors(file_destination):
    """
    This method loads the word vectors from the supplied file destination. 
    It loads the dictionary of word vectors and prints its size and the vector dimensionality. 
    """
    print "Loading pretrained word vectors from", file_destination
    word_dictionary = {}

    try:

        f = codecs.open(file_destination, 'r', 'utf-8') 

        for line in f:

            line = line.split(" ", 1)   
            key = unicode(line[0].lower())
            word_dictionary[key] = numpy.fromstring(line[1], dtype="float32", sep=" ")

    except:

        print "Word vectors could not be loaded from:", file_destination
        return {}

    print len(word_dictionary), "vectors loaded from", file_destination     

    return word_dictionary
tolmdb.py 文件源码 项目:crnn 作者: wulivicte 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def checkImageIsValid(imageBin):
    if imageBin is None:
        return False
    try:
        imageBuf = np.fromstring(imageBin, dtype=np.uint8)
        img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
        imgH, imgW = img.shape[0], img.shape[1]
    except:
        return False
    else:
        if imgH * imgW == 0:
            return False        
    return True
YM_readframefeature.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 77 收藏 0 点赞 0 评论 0
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
YM_labels_matrix.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
YM_framemean.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
bluefile.py 文件源码 项目:core-framework 作者: RedhawkSDR 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _unpack_data_block(f, blocksize, packing):
    """
    Private method to read a block from a file into a NumPy array.
    """
    return numpy.fromstring(f.read(blocksize), packing)
utils.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_full_alignment_base_quality_scores(read):
    """
    Returns base quality scores for the full read alignment, inserting zeroes for deletions and removing
    inserted and soft-clipped bases. Therefore, only returns quality for truly aligned sequenced bases.

    Args:
        read (pysam.AlignedSegment): read to get quality scores for

    Returns:
        np.array: numpy array of quality scores

    """

    quality_scores = np.fromstring(read.qual, dtype=np.byte) - tk_constants.ILLUMINA_QUAL_OFFSET

    start_pos = 0

    for operation,length in read.cigar:
        operation = cr_constants.cigar_numeric_to_category_map[operation]

        if operation == 'D':
            quality_scores = np.insert(quality_scores, start_pos, [0] * length)
        elif operation == 'I' or operation == 'S':
            quality_scores = np.delete(quality_scores, np.s_[start_pos:start_pos + length])

        if not operation == 'I' and not operation == 'S':
            start_pos += length

    return start_pos, quality_scores
fasta.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_qvs(qual):
    if qual is None:
        return None

    return numpy.fromstring(qual, dtype=numpy.byte) - ILLUMINA_QUAL_OFFSET
fasta.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_bases_qual(qual, cutoff):
    if qual is None:
        return None

    qvs = numpy.fromstring(qual, dtype=numpy.byte) - ILLUMINA_QUAL_OFFSET
    return numpy.count_nonzero(qvs[qvs > cutoff])
fasta.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_min_qual(qual):
    if qual is None or len(qual) == 0:
        return None

    return (numpy.fromstring(qual, dtype=numpy.byte) - ILLUMINA_QUAL_OFFSET).min()


问题


面经


文章

微信
公众号

扫码关注公众号