python类power()的实例源码

feature_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def unknown_feature_extractor(x, sr, win_len, shift_len, barks, inner_win, inner_shift, win_type, method_version):
    x_spectrum = stft_extractor(x, win_len, shift_len, win_type)
    coef = get_fft_bark_mat(sr, win_len, barks, 20, sr//2)
    bark_spect = np.matmul(coef, x_spectrum)
    ams = np.zeros((barks, inner_win//2+1, (bark_spect.shape[1] - inner_win)//inner_shift))
    for i in range(barks):
        channel_stft = stft_extractor(bark_spect[i, :], inner_win, inner_shift, 'hanning')
        if method_version == 'v1':
            ams[i, :, :] = 20 * np.log(np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift]))
        elif method_version == 'v2':
            channel_amplitude = np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = np.angle(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = channel_angle - (np.floor(channel_angle / (2.*np.pi)) * (2.*np.pi))
            ams[i, :, :] = np.power(channel_amplitude, 1./3.) * channel_angle
        else:
            ams[i, :, :] = np.abs(channel_stft)
    return ams
ams_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def ams_extractor(x, sr, win_len, shift_len, barks, inner_win, inner_shift, win_type, method_version):
    x_spectrum = stft_extractor(x, win_len, shift_len, win_type)
    coef = get_fft_bark_mat(sr, win_len, barks, 20, sr//2)
    bark_spect = np.matmul(coef, x_spectrum)
    ams = np.zeros((barks, inner_win//2+1, (bark_spect.shape[1] - inner_win)//inner_shift))
    for i in range(barks):
        channel_stft = stft_extractor(bark_spect[i, :], inner_win, inner_shift, 'hanning')
        if method_version == 'v1':
            ams[i, :, :] = 20 * np.log(np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift]))
        elif method_version == 'v2':
            channel_amplitude = np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = np.angle(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = channel_angle - (np.floor(channel_angle / (2.*np.pi)) * (2.*np.pi))
            ams[i, :, :] = np.power(channel_amplitude, 1./3.) * channel_angle
        else:
            ams[i, :, :] = np.abs(channel_stft)
    return ams
switching.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def perp_fit(ts, vs):

    def lsq_macrospin(p, ts, vs):
        t0 = p[0]
        v0 = p[1]
        a = v0
        b = t0*v0
        to = 1
        vo = a + b/to

        # Here is what we expect
        vs_ideal = v0*(1.0 + t0/ts)
        Xs = []
        Ys = []
        for t,v in zip(ts,vs):
            ti,vi = find_closest(t,v,t0,v0)
            Xs.append(x2X(ti,to,b))
            Ys.append(y2Y(v,vi,a,b))
        return np.power(Ys,2)
    p0 = [0.2, 100]
    p, flag = leastsq(lsq_macrospin, p0, args=(ts, vs))
    return p
mixer_calibration.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def find_null_offset(xpts, powers, default=0.0):
    """Finds the offset corresponding to the minimum power using a fit to the measured data"""
    def model(x, a, b, c):
        return a*(x - b)**2 + c
    powers = np.power(10, powers/10.)
    min_idx = np.argmin(powers)
    try:
        fit = curve_fit(model, xpts, powers, p0=[1, xpts[min_idx], powers[min_idx]])
    except RuntimeError:
        logger.warning("Mixer null offset fit failed.")
        return default, np.zeros(len(powers))
    best_offset = np.real(fit[0][1])
    best_offset = np.minimum(best_offset, xpts[-1])
    best_offset = np.maximum(best_offset, xpts[0])
    xpts_fine = np.linspace(xpts[0],xpts[-1],101)
    fit_pts = np.array([np.real(model(x, *fit[0])) for x in xpts_fine])
    if min(fit_pts)<0: fit_pts-=min(fit_pts)-1e-10 #prevent log of a negative number
    return best_offset, xpts_fine, 10*np.log10(fit_pts)
FitLPmodelAndMakeXmlCtools.py 文件源码 项目:CTAtools 作者: davidsanchez 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def Get3FGL(Cat,xdata,ydata,dydata):
    #create a spectrum for a given catalog and compute the model+butterfly
    # 3FGL CATALOG
    Cat.MakeSpectrum("3FGL",1e-4,0.3)
    enerbut,but,enerphi,phi = Cat.Plot("3FGL")

    # read DATA Point from 3FGL CATALOG
    em3FGL,ep3FGL,flux3FGL,dflux3FGL =  Cat.GetDataPoints('3FGL') #energy in TeV since the user ask for that in the call of Cat
    ener3FGL = numpy.sqrt(em3FGL*ep3FGL) 
    dem3FGL = ener3FGL-em3FGL
    dep3FGL = ep3FGL-ener3FGL
    c=Cat.ReadPL('3FGL')[3]
    e2dnde3FGL = (-c+1)*flux3FGL*numpy.power(ener3FGL*1e6,-c+2)/(numpy.power((ep3FGL*1e6),-c+1)-numpy.power((em3FGL*1e6),-c+1))*1.6e-6
    de2dnde3FGL = e2dnde3FGL*dflux3FGL/flux3FGL

    for i in xrange(len(ener3FGL)):
        xdata.append(numpy.log10(ener3FGL[i]))
        ydata.append(numpy.log10(e2dnde3FGL[i]))
        dydata.append(numpy.log10(de2dnde3FGL[i]))

    return enerbut,but,enerphi,phi,ener3FGL, e2dnde3FGL, dem3FGL, dep3FGL, de2dnde3FGL
generate.py 文件源码 项目:Tacotron_pytorch 作者: root20 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def spectrogram2wav(spectrogram, n_fft, win_length, hop_length, num_iters):
    '''
    spectrogram: [t, f], i.e. [t, nfft // 2 + 1]
    '''
    min_level_db = -100
    ref_level_db = 20

    spec = spectrogram.T
    # denormalize
    spec = (np.clip(spec, 0, 1) * - min_level_db) + min_level_db
    spec = spec + ref_level_db

    # Convert back to linear
    spec = np.power(10.0, spec * 0.05)

    return _griffin_lim(spec ** 1.5, n_fft, win_length, hop_length, num_iters)  # Reconstruct phase
tasks.py 文件源码 项目:Quantrade 作者: quant-trade 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def process_commissions(symbol, multiplied_symbols):
    try:
        symbol_ = Symbols.objects.filter(symbol=symbol).values('currency', 'spread', 'digits', 'tick_size', 'tick_value', 'broker', 'symbol')
        if settings.SHOW_DEBUG:
            print("Processing commisions for {}".format(symbol_))

        if any(symbol_[0]['symbol'] in s for s in multiplied_symbols):
            value = (((power(10.0, -symbol_[0]['digits']) * \
                float(symbol_[0]['spread'])) / float(symbol_[0]['tick_size'])) * \
                float(symbol_[0]['tick_value'])) * 100.0
        else:
            value = (((power(10.0, -symbol_[0]['digits']) * \
                float(symbol_[0]['spread'])) / float(symbol_[0]['tick_size'])) * \
                float(symbol_[0]['tick_value']))

        symbol.commission = value
        symbol.save()
    except Exception as err:
        print(colored.red("At process commissions {}".format(err)))
        symbol.commission = None
        symbol.save()
    if settings.SHOW_DEBUG:
        print("Updated commision value for {0}\n".format(symbol.symbol))
focal_loss.py 文件源码 项目:focal-loss 作者: unsky 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(self, is_train, req, in_data, out_data, aux):

        cls_score = in_data[0].asnumpy()
        labels = in_data[1].asnumpy()
        self._labels = labels

        pro_ = np.exp(cls_score - cls_score.max(axis=1).reshape((cls_score.shape[0], 1)))
        pro_ /= pro_.sum(axis=1).reshape((cls_score.shape[0], 1))
      #  pro_ = mx.nd.SoftmaxActivation(cls_score) + 1e-14
       # pro_ = pro_.asnumpy()   
        self.pro_ = pro_
        # restore pt for backward

        self._pt = pro_[np.arange(pro_.shape[0],dtype = 'int'), labels.astype('int')]

        ### note!!!!!!!!!!!!!!!!
        # focal loss value is not used in this place we should forward the cls_pro in this layer, the focal vale should be calculated in metric.py
        # the method is in readme
        #  focal loss (batch_size,num_class)
        loss_ = -1 * np.power(1 - pro_, self._gamma) * np.log(pro_)
        print "---------------" 
        print 'pro:',pro_[1],labels[1]
        self.assign(out_data[0],req[0],mx.nd.array(pro_))
utils.py 文件源码 项目:DeepAnomaly 作者: adiyoss 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def build_data_auto_encoder(data, step, win_size):
    count = data.shape[1] / float(step)
    docX = np.zeros((count, 3, win_size))

    for i in range(0, data.shape[1] - win_size, step):
        c = i / step
        docX[c][0] = np.abs(data[0, i:i + win_size] - data[1, i:i + win_size])
        docX[c][1] = np.power(data[0, i:i + win_size] - data[1, i:i + win_size], 2)
        docX[c][2] = np.pad(
            (data[0, i:i + win_size - 1] - data[0, i + 1:i + win_size]) * (data[1, i:i + win_size - 1] - data[1, i + 1:i + win_size]),
            (0, 1), 'constant', constant_values=0)
    data = np.dstack((docX[:, 0], docX[:, 1], docX[:, 2])).reshape(docX.shape[0], docX.shape[1]*docX.shape[2])

    return data
posterior.py 文件源码 项目:hippylib 作者: hippylib 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, prior, d, U):
        self.prior = prior        
        ones = np.ones( d.shape, dtype=d.dtype )        
        self.d = ones - np.power(ones + d, -.5)
        self.lrsqrt = LowRankOperator(self.d, U)
        self.help = Vector()
        self.init_vector(self.help, 0)
lowRankOperator.py 文件源码 项目:hippylib 作者: hippylib 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def trace2(self,W=None):
        """
        Compute the trace of A*A (Note this is the square of Frob norm, since A is symmetic).
        If the weight W is provided, it will compute the trace of (AW)^2.

        This is equivalent to 
        tr_W(A) = \sum_i lambda_i^2,
        where lambda_i are the generalized eigenvalues of
        A x = lambda W^-1 x.

        Note if U is a W-orthogonal matrix then
        tr_W(A) = \sum_i D(i,i)^2. 
        """
        if W is None:
            UtU = np.dot(self.U.T, self.U)
            dUtU = self.d[:,None] * UtU #diag(d)*UtU.
            tr2 = np.sum(dUtU*dUtU)
        else:
            WU = np.zeros(self.U.shape, dtype=self.U.dtype)
            u, wu = Vector(), Vector()
            W.init_vector(u,1)
            W.init_vector(wu,0)
            for i in range(self.U.shape[1]):
                u.set_local(self.U[:,i])
                W.mult(u,wu)
                WU[:,i] = wu.get_local()
            UtWU = np.dot(self.U.T, WU)
            dUtWU = self.d[:,None] * UtWU #diag(d)*UtU.
            tr2 = np.power(np.linalg.norm(dUtWU),2)

        return tr2
MLE1.py 文件源码 项目:MachineLearningProjects 作者: geallen 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def gaussian_2d(x, y, mx, my, cov):
    ''' x and y are the 2D coordinates to calculate the function value
        mx and my are the mean parameters in x and y axes
        cov is the 2x2 variance-covariance matrix'''
    ret = 0

    # ^^ YOUR CODE HERE ^^
    sigmax = np.sqrt(cov[0][0])
    sigmay = np.sqrt(cov[1][1])
    p = cov[0][1] / (np.sqrt(cov[0][0]) * np.sqrt(cov[1][1]))
    ret = (1 / (2 * np.pi * sigmax * sigmay * np.sqrt( 1 - np.power(p,2)))) * np.exp((( -1 / ( 2 * ( 1 - np.power(p,2)))) * ( ((np.power((x - mx), 2)) / (np.power(sigmax,2))) + ((np.power((y - my), 2)) / ( np.power(sigmay, 2))) - (( 2 * p * (x - mx) * (y - my)) / (sigmax * sigmay)))))

    return ret

## Finally, we compute the Gaussian function outputs for each entry in our mesh and plot the surface for each class.
analyzer.py 文件源码 项目:vae-npvc 作者: JeremyCCHsu 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def pw2wav(features, feat_dim=513, fs=16000):
    ''' NOTE: Use `order='C'` to ensure Cython compatibility '''
    en = np.reshape(features['en'], [-1, 1])
    sp = np.power(10., features['sp'])
    sp = en * sp
    if isinstance(features, dict):
        return pw.synthesize(
            features['f0'].astype(np.float64).copy(order='C'),
            sp.astype(np.float64).copy(order='C'),
            features['ap'].astype(np.float64).copy(order='C'),
            fs,
        )
    features = features.astype(np.float64)
    sp = features[:, :feat_dim]
    ap = features[:, feat_dim:feat_dim*2]
    f0 = features[:, feat_dim*2]
    en = features[:, feat_dim*2 + 1]
    en = np.reshape(en, [-1, 1])
    sp = np.power(10., sp)
    sp = en * sp
    return pw.synthesize(
        f0.copy(order='C'),
        sp.copy(order='C'),
        ap.copy(order='C'),
        fs
    )
basic_model.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def applyColorAugmentation(self, img, std=0.55, gamma=2.5):
    '''Applies random color augmentation following [1].  An additional gamma
    transformation is added.

    [1] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton.  ImageNet
        Classification with Deep Convolutional Neural Networks.  NIPS 2012.
    '''

    alpha = np.clip(np.random.normal(0, std, size=3), -1.3 * std, 1.3 * std)
    perturbation = self.data_evecs.dot((alpha * np.sqrt(self.data_evals)).T)
    gamma = 1.0 - sum(perturbation) / gamma
    return np.power(np.clip(img + perturbation, 0., 1.), gamma)
    return np.clip((img + perturbation), 0., 1.)
data_preparation.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def applyColorAugmentation(img, std=0.5):
  '''Applies random color augmentation following [1].

  [1] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. \
    ImageNet Classification with Deep Convolutional Neural Networks. \
    NIPS 2012.'''

  alpha = np.clip(np.random.normal(0, std, size=3), -2 * std, 2. * std)
  perturbation = sld_evecs.dot((alpha * np.sqrt(sld_evals)).T)
  gamma = 1.0 - sum(perturbation) / 3.
  return np.power(np.clip(img + perturbation, 0., 1.), gamma)
  return np.clip((img + perturbation), 0., 1.)
ztnb_em.py 文件源码 项目:CLAM 作者: Xinglab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def ztnb_pmf(y, mu, alpha):
    r = 1.0 / alpha
    if y <= 0:
        raise Exception('y must be larger than 0.')
    p = mu/(mu+r+0.0)
    ztnbin_mpmath = lambda y, p, r: mpmath.gamma(y + r)/(mpmath.gamma(y+1)*mpmath.gamma(r))*np.power(1-p, r)*np.power(p, y)/(1-np.power(1-p, r))
    ztnbin = np.frompyfunc(ztnbin_mpmath, 3, 1)
    return float(ztnbin(y, p, r))
ztnb_em.py 文件源码 项目:CLAM 作者: Xinglab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def ztnb_cdf(y, mu, alpha):
    r = 1.0/alpha
    if y <= 0:
        raise Exception('y must be larger than 0.')
    p = mu/(mu+r+0.0)
    F_ztnb = ( 1 - special.btdtr(y+1, r, p) - np.power(1-p, r) ) / (1-np.power(1-p,r))
    return F_ztnb
ztnb_em.py 文件源码 项目:CLAM 作者: Xinglab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def expected_zeros(pseudo_size, mu, alpha):
    min_allowed_alpha=10**-4
    max_allowed_prob_zero=0.99
    if alpha < min_allowed_alpha:
        prob_zero = max_allowed_prob_zero
    else:
        prob_zero = np.min([np.power(1.0+alpha*mu, -1.0/alpha), 0.99])
    expected_zeros = int(pseudo_size*(prob_zero/(1-prob_zero)))
    return expected_zeros
activations.py 文件源码 项目:NumpyDL 作者: oujago 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def derivative(self, input=None):
        """Backward propagation.

        Returns
        -------
        float32 
            The derivative of Elliot function. 
        """
        last_forward = 1 + np.abs(input * self.steepness) if input else self.last_forward
        return 0.5 * self.steepness / np.power(last_forward, 2)


# elliot-end
# symmetric-elliot-start
activations.py 文件源码 项目:NumpyDL 作者: oujago 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def derivative(self, input=None):
        """Backward propagation.

        Returns
        -------
        float32 
            The derivative of SymmetricElliot function.
        """
        last_forward = 1 + np.abs(input * self.steepness) if input else self.last_forward
        return self.steepness / np.power(last_forward, 2)


# symmetric-elliot-end
# softplus-start


问题


面经


文章

微信
公众号

扫码关注公众号