python类savetxt()的实例源码

possumLib.py 文件源码 项目:DW-POSSUM 作者: marksgraham 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def makeRotMatrix(motionParams, simDirClusterDirection):
  #Make three rotation matrices
  call(["makerot", "-t", str(motionParams[4]), "-a", "1,0,0", "--cov="+simDirClusterDirection+ "/brain.nii.gz", "-o", "rotx.mat"])
  call(["makerot", "-t", str(motionParams[5]), "-a", "0,1,0", "--cov="+simDirClusterDirection+ "/brain.nii.gz", "-o", "roty.mat"])
  call(["makerot", "-t", str(motionParams[6]), "-a", "0,0,1", "--cov="+simDirClusterDirection+ "/brain.nii.gz", "-o", "rotz.mat"])
  #Concatenate
  call(["convert_xfm", "-omat", "rotxy.mat","-concat", "roty.mat", "rotx.mat"])
  call(["convert_xfm", "-omat", "rotxyz.mat","-concat", "rotz.mat", "rotxy.mat"])

  #Add translations
  rot = np.loadtxt('rotxyz.mat')
  rot[0,3] += motionParams[1]
  rot[1,3] += motionParams[2]
  rot[2,3] += motionParams[3]
  np.savetxt('trans.mat', rot )
  #Tidy up
  call(["rm","rotx.mat","roty.mat","rotz.mat","rotxy.mat","rotxyz.mat",])
plot.py 文件源码 项目:tensorflow_end2end_speech_recognition 作者: hirofumi0810 项目源码 文件源码 阅读 107 收藏 0 点赞 0 评论 0
def plot_loss(train_losses, dev_losses, steps, save_path):
    """Save history of training & dev loss as figure.
    Args:
        train_losses (list): train losses
        dev_losses (list): dev losses
        steps (list): steps
    """
    # Save as csv file
    loss_graph = np.column_stack((steps, train_losses, dev_losses))
    if os.path.isfile(os.path.join(save_path, "ler.csv")):
        os.remove(os.path.join(save_path, "ler.csv"))
    np.savetxt(os.path.join(save_path, "loss.csv"), loss_graph, delimiter=",")

    # TODO: error check for inf loss

    # Plot & save as png file
    plt.clf()
    plt.plot(steps, train_losses, blue, label="Train")
    plt.plot(steps, dev_losses, orange, label="Dev")
    plt.xlabel('step', fontsize=12)
    plt.ylabel('loss', fontsize=12)
    plt.legend(loc="upper right", fontsize=12)
    if os.path.isfile(os.path.join(save_path, "loss.png")):
        os.remove(os.path.join(save_path, "loss.png"))
    plt.savefig(os.path.join(save_path, "loss.png"), dvi=500)
run_workflow.py 文件源码 项目:graynet 作者: raamana 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def save(weight_vec, out_dir, subject, str_suffix=None):
    "Saves the features to disk."

    if out_dir is not None:
        # get outpath returned from hiwenet, based on dist name and all other parameters
        # choose out_dir name  based on dist name and all other parameters
        out_subject_dir = pjoin(out_dir, subject)
        if not pexists(out_subject_dir):
            os.mkdir(out_subject_dir)

        if str_suffix is not None:
            out_file_name = '{}_graynet.csv'.format(str_suffix)
        else:
            out_file_name = 'graynet.csv'

        out_weights_path = pjoin(out_subject_dir, out_file_name)

        try:
            np.savetxt(out_weights_path, weight_vec, fmt='%.5f')
            print('\nSaved the features to \n{}'.format(out_weights_path))
        except:
            print('\nUnable to save features to {}'.format(out_weights_path))
            traceback.print_exc()

    return
run_mnist_example.py 文件源码 项目:holographic_memory 作者: jramapuram 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def encode(sess, memory, encoder, values, keys, full_batch_host, keys_host, batch_size):
    full_batch_size = full_batch_host.shape[0]
    assert full_batch_size >= batch_size, "full batch size needs to be >= mini-batch size"
    memories_host = np.zeros([memory.num_models, memory.input_size])
    print 'full_batch_size = ', full_batch_size, 'minibatch_size = ', batch_size

    for begin,end in zip(range(0, full_batch_size, batch_size),
                         range(batch_size, full_batch_size+1, batch_size)):
        feed_dict={keys: keys_host[begin:end],
                   values: full_batch_host[begin:end]}

        # encode value with the keys
        memories_host += sess.run(encoder, feed_dict=feed_dict)

    #np.savetxt("encoded.csv", memories_host, delimiter=",")
    return memories_host
create_boc.py 文件源码 项目:bag-of-concepts 作者: hank110 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def create_boc_w2v_train(doc_path,dim,win,freq,num_concept):
    '''
    Creates (word, concept) result for given dimension, window, min freq threshold and num of concepts    Trains new W2v models simultaneously
    '''
    all_param=[]
    for edim in dim:
        model=train_w2v(doc_path,edim,win,freq)
        wlist=get_tokens(doc_path,freq) 
        wM=get_wordvectors(model,wlist)
        for ecp in num_concpt:
            w2c_output="w2c_d%s_w%s_mf%s_c%s.csv" %(str(edim),str(win),str(freq),str(ecp))
            boc_output="boc_d%s_w%s_mf%s_c%s.csv" %(str(edim),str(win),str(freq),str(ecp))
            word2concept=create_concepts(wM,wlist,w2c_output,num_concept) 
            boc=apply_cfidf(doc_path,word2concept,num_concept)
            np.savetxt(boc_output, boc, delimiter=",")
            print(".... BOC vectors created in %s" %boc_output)
            all_param.append(namedtuple('parameters','document_path dimension window_size min_freq num_concept'))
    return all_param
create_boc.py 文件源码 项目:bag-of-concepts 作者: hank110 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def create_boc_w2v_load(models,doc_path,win,freq,num_concept,model_path):
    '''
    Creates (word, concept) result for given dimension, window, min freq threshold and num of concepts    Trains new W2v models simultaneously    
    '''
    all_param=[]
    for em in models:
        em_name=em.split("/")[-1]
        model=KeyedVectors.load_word2vec_format(em)
        wlist=get_tokens(doc_path,freq) 
        wM=get_wordvectors(model,wlist)
        for ecp in num_concpt:
            w2c_output="w2c_d%s_w%s_mf%s_c%s.csv" %(str(em_name),str(win),str(freq),str(ecp))
            boc_output="boc_d%s_w%s_mf%s_c%s.csv" %(str(em_name),str(win),str(freq),str(ecp))
            word2concept=create_concepts(wM,wlist,w2c_output,num_concept) 
            boc=apply_cfidf(doc_path,word2concept,num_concept)
            np.savetxt(boc_output, boc, delimiter=",")
            print(".... BOC vectors created in %s" %boc_output)
            all_param.append(namedtuple('parameters','document_path dimension window_size min_freq num_concept'))
    return all_param
create_boc.py 文件源码 项目:bag-of-concepts 作者: hank110 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def create_boc_w2v_train(doc_path,dim,win,freq,num_concept):
    '''
    Creates (word, concept) result for given dimension, window, min freq threshold and num of concepts    Trains new W2v models simultaneously
    '''
    all_param=[]
    for edim in dim:
        model=train_w2v(doc_path,edim,win,freq)
        wlist=get_tokens(doc_path,freq) 
        wM=get_wordvectors(model,wlist)
        for ecp in num_concpt:
            w2c_output="w2c_d%s_w%s_mf%s_c%s.csv" %(str(edim),str(win),str(freq),str(ecp))
            boc_output="boc_d%s_w%s_mf%s_c%s.csv" %(str(edim),str(win),str(freq),str(ecp))
            word2concept=create_concepts(wM,wlist,w2c_output,num_concept) 
            boc=apply_cfidf(doc_path,word2concept,num_concept)
            np.savetxt(boc_output, boc, delimiter=",")
            print(".... BOC vectors created in %s" %boc_output)
            all_param.append(namedtuple('parameters','document_path dimension window_size min_freq num_concept'))
    return all_param
create_boc.py 文件源码 项目:bag-of-concepts 作者: hank110 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def create_boc_w2v_load(models,doc_path,win,freq,num_concept,model_path):
    '''
    Creates (word, concept) result for given dimension, window, min freq threshold and num of concepts    Trains new W2v models simultaneously    
    '''
    all_param=[]
    for em in models:
        em_name=em.split("/")[-1]
        model=KeyedVectors.load_word2vec_format(em)
        wlist=get_tokens(doc_path,freq) 
        wM=get_wordvectors(model,wlist)
        for ecp in num_concpt:
            w2c_output="w2c_d%s_w%s_mf%s_c%s.csv" %(str(em_name),str(win),str(freq),str(ecp))
            boc_output="boc_d%s_w%s_mf%s_c%s.csv" %(str(em_name),str(win),str(freq),str(ecp))
            word2concept=create_concepts(wM,wlist,w2c_output,num_concept) 
            boc=apply_cfidf(doc_path,word2concept,num_concept)
            np.savetxt(boc_output, boc, delimiter=",")
            print(".... BOC vectors created in %s" %boc_output)
            all_param.append(namedtuple('parameters','document_path dimension window_size min_freq num_concept'))
    return all_param
Preprocessing.py 文件源码 项目:PySCUBA 作者: GGiecold 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def write_preprocessed_data(output_directory, cell_IDs, cell_stages, data, markers):

    processed_data_path = path.join(output_directory, 'processed_data.tsv')

    with open(processed_data_path, 'w') as f:
        f.write('\t'.join(cell_IDs))
        f.write('\n')
        f.write('\t'.join(cell_stages))
        f.write('\n')
        np.savetxt(f, data.T, fmt = '%.6f', delimiter = '\t')

    dataset = np.genfromtxt(processed_data_path, delimiter = '\t', dtype = str)
    dataset = np.insert(dataset, 0, np.append(['Cell ID', 'Stage'], 
        markers), axis = 1)

    with open(processed_data_path, 'w') as f:
        np.savetxt(f, dataset, fmt = '%s', delimiter = '\t')
bdm.py 文件源码 项目:elfi 作者: elfi-dev 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def prepare_inputs(*inputs, **kwinputs):
    """Prepare the inputs for the simulator.

    The signature follows that given in `elfi.tools.external_operation`. This function
    appends kwinputs with unique and descriptive filenames and writes an input file for
    the bdm executable.
    """
    alpha, delta, tau, N = inputs
    meta = kwinputs['meta']

    # Organize the parameters to an array. The broadcasting works nicely with constant
    # arguments.
    param_array = np.row_stack(np.broadcast(alpha, delta, tau, N))

    # Prepare a unique filename for parallel settings
    filename = '{model_name}_{batch_index}_{submission_index}.txt'.format(**meta)
    np.savetxt(filename, param_array, fmt='%.4f %.4f %.4f %d')

    # Add the filenames to kwinputs
    kwinputs['filename'] = filename
    kwinputs['output_filename'] = filename[:-4] + '_out.txt'

    # Return new inputs that the command will receive
    return inputs, kwinputs
calculateDistanceInt.py 文件源码 项目:RecursiveHierarchicalClustering 作者: xychang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def run(self):
        # pr = cProfile.Profile()
        print '[LOG]: start new thread '+str(self.threadID)
        curTime = time.time()
        distM = self.matrix[self.sfrom].dot(
                    self.matrix[self.sto].T).todense()
        distM = np.maximum(
            np.arccos(np.minimum(distM, np.ones(distM.shape))) /
            (PI_VALUE/200)-0.01,
            np.zeros(distM.shape)).astype(np.int8)

        # np.savetxt(self.fo, distM, fmt = '%d')
        np.save(self.fo + '.npy', distM)
        print('[LOG]: thread %d finished after %d' %
              (self.threadID, time.time() - curTime))

        # self.pr.disable()
        # # sortby = 'cumulative'
        # # pstats.Stats(pr).strip_dirs().sort_stats(sortby).print_stats()
        # self.pr.print_stats()
test_io.py 文件源码 项目:krpcScripts 作者: jwvanderbeck 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_format(self):
        a = np.array([(1, 2), (3, 4)])
        c = BytesIO()
        # Sequence of formats
        np.savetxt(c, a, fmt=['%02d', '%3.1f'])
        c.seek(0)
        assert_equal(c.readlines(), [b'01 2.0\n', b'03 4.0\n'])

        # A single multiformat string
        c = BytesIO()
        np.savetxt(c, a, fmt='%02d : %3.1f')
        c.seek(0)
        lines = c.readlines()
        assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n'])

        # Specify delimiter, should be overiden
        c = BytesIO()
        np.savetxt(c, a, fmt='%02d : %3.1f', delimiter=',')
        c.seek(0)
        lines = c.readlines()
        assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n'])

        # Bad fmt, should raise a ValueError
        c = BytesIO()
        assert_raises(ValueError, np.savetxt, c, a, fmt=99)
YM_labels_model.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def main():
    labels_uni = np.zeros([4716,1])
    with open(flags.FLAGS.src_path_1, "rt", encoding='utf-8') as csvfile:
        spamreader = csv.reader(csvfile)
        line_num = 0
        for row in spamreader:
            line_num += 1
            print('the '+str(line_num)+'th file is processing')
            if line_num==1:
                continue
            lbs = row[1].split()
            for i in range(0,len(lbs),2):
                labels_uni[int(lbs[i])] += 1
    np.savetxt('labels_model.out', labels_uni, delimiter=',')
YM_labels_vocab.py 文件源码 项目:youtube-8m 作者: wangheda 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def main():
    rootclass = {}
    with open(flags.FLAGS.src_path_1, "rt", encoding='utf-8') as csvfile:
        spamreader = csv.reader(csvfile)
        line_num = 0
        for row in spamreader:
            line_num += 1
            print('the '+str(line_num)+'th file is processing')
            if line_num==1:
                continue
            if row[5] in rootclass:
                rootclass[row[5]].append(line_num-2)
            else:
                rootclass[row[5]] = [line_num-2]
    labels_ordered = []
    for x in rootclass:
        labels_ordered.extend(rootclass[x])
    labels_ordered = [int(l) for l in labels_ordered]
    reverse_ordered = np.zeros([4716,1])
    for i in range(len(labels_ordered)):
        reverse_ordered[labels_ordered[i]] = i
    print(len(rootclass))
    print(labels_ordered)
    np.savetxt('labels_ordered.out', reverse_ordered, delimiter=',')
    random.shuffle(labels_ordered)
    reverse_unordered = np.zeros([4716,1])
    for i in range(len(labels_ordered)):
        reverse_unordered[labels_ordered[i]] = i
    print(labels_ordered)
    np.savetxt('labels_unordered.out', reverse_unordered, delimiter=',')
    labels_class = np.zeros([len(rootclass),4716])
    flag = 0
    for x in rootclass:
        for i in rootclass[x]:
            labels_class[flag,i] = 1
        flag +=1

    np.savetxt('labels_class.out', labels_class)
plyfile.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _write_txt(self, stream):
        '''
        Save a PLY element to an ASCII-format PLY file.  The element may
        contain list properties.

        '''
        for rec in self.data:
            fields = []
            for prop in self.properties:
                fields.extend(prop._to_fields(rec[prop.name]))

            _np.savetxt(stream, [fields], '%.18g', newline='\r\n')
plyfile.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _write_txt(self, stream):
        '''
        Save a PLY element to an ASCII-format PLY file.  The element may
        contain list properties.

        '''
        for rec in self.data:
            fields = []
            for prop in self.properties:
                fields.extend(prop._to_fields(rec[prop.name]))

            _np.savetxt(stream, [fields], '%.18g', newline='\r\n')
toon.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def save_poses(fn, poses): 
    """ Save poses in toon format """ 
    Rts = [pose.matrix[:3,:] for pose in poses]
    with file(fn, 'w') as outfile:
        for Rt in Rts:
            for row in Rt:
                np.savetxt(outfile, row, fmt='%-8.7f', delimiter=' ', newline=' ')
                outfile.write('\n')
            outfile.write('\n')
    return
test_pynnio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def write_test_file(self, variable='v', check=False):
        data, metadata = self.build_test_data(variable)
        with open(self.test_file, 'wb') as f:
            for item in sorted(metadata.items()):
                f.write(("# %s = %s\n" % item).encode('utf8'))
            np.savetxt(f, data)
        if check:
            raise NotImplementedError
pynnio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _write_file_contents(self, data, metadata):
        with open(self.filename, 'wb') as f:
            for item in sorted(metadata.items()):
                f.write(("# %s = %s\n" % item).encode('utf8'))
            numpy.savetxt(f, data)
test_pynnio.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def write_test_file(self, variable='v', check=False):
        data, metadata = self.build_test_data(variable)
        with open(self.test_file, 'wb') as f:
            for item in sorted(metadata.items()):
                f.write(("# %s = %s\n" % item).encode('utf8'))
            np.savetxt(f, data)
        if check:
            raise NotImplementedError


问题


面经


文章

微信
公众号

扫码关注公众号