python类int64()的实例源码

test_multiarray.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_dtype_mix(self):
        c = np.array([False, True, False, False, False, False, True, False,
                     False, False, True, False])
        a = np.uint32(1)
        b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
                      dtype=np.float64)
        r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
                     dtype=np.float64)
        assert_equal(np.where(c, a, b), r)

        a = a.astype(np.float32)
        b = b.astype(np.int64)
        assert_equal(np.where(c, a, b), r)

        # non bool mask
        c = c.astype(np.int)
        c[c != 0] = 34242324
        assert_equal(np.where(c, a, b), r)
        # invert
        tmpmask = c != 0
        c[c == 0] = 41247212
        c[tmpmask] = 0
        assert_equal(np.where(c, b, a), r)
test_einsum.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_einsum_misc(self):
        # This call used to crash because of a bug in
        # PyArray_AssignZero
        a = np.ones((1, 2))
        b = np.ones((2, 2, 1))
        assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

        # The iterator had an issue with buffering this reduction
        a = np.ones((5, 12, 4, 2, 3), np.int64)
        b = np.ones((5, 12, 11), np.int64)
        assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
                        np.einsum('ijklm,ijn->', a, b))

        # Issue #2027, was a problem in the contiguous 3-argument
        # inner loop implementation
        a = np.arange(1, 3)
        b = np.arange(1, 5).reshape(2, 2)
        c = np.arange(1, 9).reshape(4, 2)
        assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
                    [[[1,  3], [3,  9], [5, 15], [7, 21]],
                    [[8, 16], [16, 32], [24, 48], [32, 64]]])
test_datetime.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_datetime_y2038(self):
        # Test parsing on either side of the Y2038 boundary
        a = np.datetime64('2038-01-19T03:14:07')
        assert_equal(a.view(np.int64), 2**31 - 1)
        a = np.datetime64('2038-01-19T03:14:08')
        assert_equal(a.view(np.int64), 2**31)

        # Test parsing on either side of the Y2038 boundary with
        # a manually specified timezone offset
        with assert_warns(DeprecationWarning):
            a = np.datetime64('2038-01-19T04:14:07+0100')
            assert_equal(a.view(np.int64), 2**31 - 1)
        with assert_warns(DeprecationWarning):
            a = np.datetime64('2038-01-19T04:14:08+0100')
            assert_equal(a.view(np.int64), 2**31)

        # Test parsing a date after Y2038
        a = np.datetime64('2038-01-20T13:21:14')
        assert_equal(str(a), '2038-01-20T13:21:14')
genLdaFiles.py 文件源码 项目:top-k-rec 作者: domainxz 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def main():
    parser = argparse.ArgumentParser(description="Generate the beta abd theta files after latent Dirichlet allocation (LDA) process.");
    parser.add_argument('-i', '--input', required=True, help="The input file where each line starts with the number of word as well as the sparse representation of word distribution");
    parser.add_argument('-o', '--output', required=True, help="The output path");
    args  = parser.parse_args();
    tfidf = pickle.load(open(args.input));
    feat  = tfidf.toarray().astype(np.int64);
    model = lda.LDA(n_topics=50, n_iter=1500, random_state=2017);
    model.fit(feat);
    fid   = open(os.path.join(args.output, 'init.beta'), 'w');
    beta  = model.topic_word_;
    for row in range(beta.shape[0]):
        fid.write('%f'%beta[row,0]);
        for col in range(1, beta.shape[1]):
            fid.write(' %f'%beta[row,col]);
        fid.write('\n');
    fid.close();
    fid   = open(os.path.join(args.output, 'init.theta'), 'w');
    theta = model.doc_topic_
    for row in range(theta.shape[0]):
        fid.write('%f'%theta[row,0]);
        for col in range(1, theta.shape[1]):
            fid.write(' %f'%theta[row,col]);
        fid.write('\n');
    fid.close();
test_backends.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_sparse_dot(self):
        x_d = np.array([0, 7, 2, 3], dtype=np.float32)
        x_r = np.array([0, 2, 2, 3], dtype=np.int64)
        x_c = np.array([4, 3, 2, 3], dtype=np.int64)

        x_sparse = sparse.csr_matrix((x_d, (x_r, x_c)), shape=(4, 5))
        x_dense = x_sparse.toarray()

        W = np.random.random((5, 4))

        backends = [KTF]
        if KTH.th_sparse_module:
            # Theano has some dependency issues for sparse
            backends.append(KTH)

        for K in backends:
            t_W = K.variable(W)
            k_s = K.eval(K.dot(K.variable(x_sparse), t_W))
            k_d = K.eval(K.dot(K.variable(x_dense), t_W))

            assert k_s.shape == k_d.shape
            assert_allclose(k_s, k_d, atol=1e-05)
test_sample.py 文件源码 项目:cupy 作者: cupy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_dtype2(self, dtype):
        dtype = numpy.dtype(dtype)

        # randint does not support 64 bit integers
        if dtype in (numpy.int64, numpy.uint64):
            return

        iinfo = numpy.iinfo(dtype)
        size = (10000,)

        x = random.randint(iinfo.min, iinfo.max + 1, size, dtype)
        self.assertEqual(x.dtype, dtype)
        self.assertLessEqual(iinfo.min, min(x))
        self.assertLessEqual(max(x), iinfo.max)

        # Lower bound check
        with self.assertRaises(ValueError):
            random.randint(iinfo.min - 1, iinfo.min + 10, size, dtype)

        # Upper bound check
        with self.assertRaises(ValueError):
            random.randint(iinfo.max - 10, iinfo.max + 2, size, dtype)
test_integration.py 文件源码 项目:pymapd 作者: mapd 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_load_columnar_pandas_all(self, con, all_types_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_": np.array([0, 1], dtype=np.int8),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table_columnar(all_types_table, data, preserve_index=False)
test_integration.py 文件源码 项目:pymapd 作者: mapd 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_load_table_creates(self, con, not_a_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_cast": np.array([0, 1], dtype=np.int8),
            "smallint_": np.array([0, 1], dtype=np.int16),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table(not_a_table, data, create=True)
test_pca.py 文件源码 项目:dask-ml 作者: dask 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_pca_int_dtype_upcast_to_double(svd_solver):
    # Ensure that all int types will be upcast to float64
    X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
    X_i64 = X_i64.astype(np.int64)
    X_i32 = X_i64.astype(np.int32)

    dX_i64 = da.from_array(X_i64, chunks=X_i64.shape)
    dX_i32 = da.from_array(X_i32, chunks=X_i32.shape)

    pca_64 = dd.PCA(n_components=3, svd_solver=svd_solver,
                    random_state=0).fit(dX_i64)
    pca_32 = dd.PCA(n_components=3, svd_solver=svd_solver,
                    random_state=0).fit(dX_i32)

    assert pca_64.components_.dtype == np.float64
    assert pca_32.components_.dtype == np.float64
    assert pca_64.transform(dX_i64).dtype == np.float64
    assert pca_32.transform(dX_i32).dtype == np.float64

    assert_array_almost_equal(pca_64.components_, pca_32.components_,
                              decimal=5)
pairwise.py 文件源码 项目:dask-ml 作者: dask 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean",
                                  batch_size=None,
                                  metric_kwargs=None):
    if batch_size is None:
        batch_size = max(X.chunks[0])
    XD = X.to_delayed().flatten().tolist()
    func = delayed(metrics.pairwise_distances_argmin_min, pure=True, nout=2)
    blocks = [func(x, Y, metric=metric, batch_size=batch_size,
                   metric_kwargs=metric_kwargs)
              for x in XD]
    argmins, mins = zip(*blocks)

    argmins = [da.from_delayed(block, (chunksize,), np.int64)
               for block, chunksize in zip(argmins, X.chunks[0])]
    # Scikit-learn seems to always use float64
    mins = [da.from_delayed(block, (chunksize,), 'f8')
            for block, chunksize in zip(mins, X.chunks[0])]
    argmins = da.concatenate(argmins)
    mins = da.concatenate(mins)
    return argmins, mins
eval_dtnn_gdb9.py 文件源码 项目:dtnn 作者: atomistic-machine-learning 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def predict(dbpath, features, sess, y):
    U0 = []
    U0_pred = []
    count = 0
    with connect(dbpath) as conn:
        n_structures = conn.count()
        for row in conn.select():
            U0.append(row['U0'])

            at = row.toatoms()
            feed_dict = {
                features['numbers']:
                    np.array(at.numbers).astype(np.int64),
                features['positions']:
                    np.array(at.positions).astype(np.float32)
            }
            U0_p = sess.run(y, feed_dict=feed_dict)
            U0_pred.append(U0_p)
            if count % 1000 == 0:
                print(str(count) + ' / ' + str(n_structures))
            count += 1
    return U0, U0_pred
finite_difference.py 文件源码 项目:house-of-enlightenment 作者: house-of-enlightenment 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def diffuse(self, pixels, delta_t):
        self.pixels.append(np.empty([self.X_MAX, self.Y_MAX], dtype=float))

        if delta_t < 5:
            return

        v = self.diffusion_constant
        h0 = self.pixels[1]
        h, idx = self.hCalc()
        hDiff = (h - h0 * idx)
        h = hDiff * delta_t * v + h0

        # pylint: disable=no-member
        pix = np.array(pixels[:, :][:], dtype=np.int64)
        color = (pix[:, :, 0] << 16) | (pix[:, :, 1] << 8) | (pix[:, :, 2])
        f = np.where(color == 0xFF0000, 0xFFFF, np.where(color == 0xFF00, 0 - 0xFFFF,
                                                         0))[:self.X_MAX, :self.Y_MAX]
        h = h + f
        h = np.clip(h, 0, 0xFFFF)
        self.pixels[2] = np.clip(h, 0, 0xFFFF)

    ##
    # This is the differences between node i,j and it's closest neighbors
    # it's used in calculateing spatial derivitives
    #
facenet.py 文件源码 项目:facerecognition 作者: guoxiaolu 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def get_label_batch(label_data, batch_size, batch_index):
    nrof_examples = np.size(label_data, 0)
    j = batch_index*batch_size % nrof_examples
    if j+batch_size<=nrof_examples:
        batch = label_data[j:j+batch_size]
    else:
        x1 = label_data[j:nrof_examples]
        x2 = label_data[0:nrof_examples-j]
        batch = np.vstack([x1,x2])
    batch_int = batch.astype(np.int64)
    return batch_int
preprocess.py 文件源码 项目:rca-evaluation 作者: sieve-microservices 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def is_monotonic(serie):
    if serie.dtype == np.float64:
        return pd.algos.is_monotonic_float64(serie.values, False)[0]
    elif serie.dtype == np.int64:
        return pd.algos.is_monotonic_int64(serie.values, False)[0]
    else:
        raise ValueError("unexpected column type: %s" % serie.dtype)
datafile.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_offset(data_dtype, dtype_offset):

    if dtype_offset == 'auto':
        if data_dtype in ['uint16', numpy.uint16]:
            dtype_offset = 32768
        elif data_dtype in ['int16', numpy.int16]:
            dtype_offset = 0
        elif data_dtype in ['int32', numpy.int32]:
            dtype_offset = 0
        elif data_dtype in ['int64', numpy.int64]:
            dtype_offset = 0
        elif data_dtype in ['float32', numpy.float32]:
            dtype_offset = 0
        elif data_dtype in ['int8', numpy.int8]:
            dtype_offset = 0
        elif data_dtype in ['uint8', numpy.uint8]:
            dtype_offset = 127
        elif data_dtype in ['float64', numpy.float64]:
            dtype_offset = 0
        if comm.rank == 0:
            print_and_log(['data type offset for %s is automatically set to %d' %(data_dtype, dtype_offset)], 'debug', logger)
    else:
        try:
            dtype_offset = int(dtype_offset)
        except Exception:
            if comm.rank == 0:
                print_and_log(["Offset %s is not valid" %dtype_offset], 'error', logger)
            sys.exit(1)

    return dtype_offset
datafile.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _get_t_start_t_stop(self, idx, chunk_size, padding=(0,0)):

        t_start     = idx*numpy.int64(chunk_size)+padding[0]
        t_stop      = (idx+1)*numpy.int64(chunk_size)+padding[1]

        if t_stop > self.duration:
            t_stop = self.duration

        if t_start < 0:
            t_start = 0

        return t_start, t_stop
datafile.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def duration(self):
        if self.is_stream:
            duration = 0
            for source in self._sources:
                duration += source.duration
            return duration
        else:
            return numpy.int64(self._shape[0])
neurofile.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):

        t_start, t_stop = self._get_t_start_t_stop(idx, chunk_size, padding)
        local_shape     = t_stop - t_start

        if nodes is None:
            nodes = numpy.arange(self.nb_channels, dtype=numpy.int32)

        local_chunk = numpy.zeros((local_shape, len(nodes)), dtype=self.data_dtype)

        for count, i in enumerate(nodes):
            local_chunk[:, count] = self.data.get_entity(numpy.int64(i)).get_data(t_start, numpy.int64(local_shape))[0]

        return self._scale_data_to_float32(local_chunk)
mpi.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def gather_array(data, mpi_comm, root=0, shape=0, dtype='float32'):
    # gather 1D or 2D numpy arrays
    assert isinstance(data, numpy.ndarray)
    assert len(data.shape) < 3
    # first we pass the data size
    size  = data.size
    sizes = mpi_comm.gather(size, root=root) or []
    # now we pass the data
    displacements = [int(sum(sizes[:i])) for i in range(len(sizes))]
    if dtype is 'float32':
        gdata         = numpy.empty(int(sum(sizes)), dtype=numpy.float32)
        mpi_comm.Gatherv([data.flatten(), size, MPI.FLOAT], [gdata, (sizes, displacements), MPI.FLOAT], root=root)
    elif dtype is 'float64':
        gdata         = numpy.empty(int(sum(sizes)), dtype=numpy.float64)
        mpi_comm.Gatherv([data.flatten(), size, MPI.DOUBLE], [gdata, (sizes, displacements), MPI.DOUBLE], root=root)
    elif dtype is 'int32':
        gdata         = numpy.empty(int(sum(sizes)), dtype=numpy.int32)
        mpi_comm.Gatherv([data.flatten(), size, MPI.INT], [gdata, (sizes, displacements), MPI.INT], root=root)
    elif dtype is 'int64':
        gdata = numpy.empty(int(sum(sizes)), dtype=numpy.int64)
        mpi_comm.Gatherv([data.flatten(), size, MPI.LONG], [gdata, (sizes, displacements), MPI.LONG], root=root)

    if len(data.shape) == 1:
        return gdata
    else:
        if shape == 0:
            num_lines = data.shape[0]
            if num_lines > 0:
                return gdata.reshape((num_lines, gdata.size//num_lines))
            else:
                return gdata.reshape((0, gdata.shape[1]))
        if shape == 1:
            num_columns = data.shape[1]
            if num_columns > 0:
                return gdata.reshape((gdata.size//num_columns, num_columns))
            else:
                return gdata.reshape((gdata.shape[0], 0))
02_frequency_discrimination_task.py 文件源码 项目:skiprnn-2017-telecombcn 作者: imatge-upc 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def generate_batch(batch_size, sampling_period, signal_duration, start_period, end_period,
                   start_target_period, end_target_period):
    """
    Generate a stratified batch of examples. There are two classes:
        class 0: sine waves with period in [start_target_period, end_target_period]
        class 1: sine waves with period in [start_period, start_target_period] U [end_target_period, end_period]
    :param batch_size: number of samples per batch
    :param sampling_period: sampling period in milliseconds
    :param signal_duration: duration of the sine waves in milliseconds

    :return x: batch of examples
    :return y: batch of labels
    """
    seq_length = int(signal_duration / sampling_period)

    n_elems = 1
    x = np.empty((batch_size, seq_length, n_elems))
    y = np.empty(batch_size, dtype=np.int64)

    t = np.linspace(0, signal_duration - sampling_period, seq_length)

    for idx in range(int(batch_size/2)):
        period = random.uniform(start_target_period, end_target_period)
        phase_shift = random.uniform(0, period)
        x[idx, :, 0] = generate_example(t, 1./period, phase_shift)
        y[idx] = 0
    for idx in range(int(batch_size/2), batch_size):
        period = random_disjoint_interval(start_period, end_period,
                                          start_target_period, end_target_period)
        phase_shift = random.uniform(0, period)
        x[idx, :, 0] = generate_example(t, 1./period, phase_shift)
        y[idx] = 1
    return x, y


问题


面经


文章

微信
公众号

扫码关注公众号