python类repeat()的实例源码

set_images.py 文件源码 项目:minc_keras 作者: tfunck 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def attribute_category(out, ratios):
    ''' This function distributes each subject in a 'train' or 'test' category.

    Args:
        out (pd.DataFrame): a pd.DataFrame that contains the info of all files
            by subject.
        ratios (list): a list containing the proportions of train/test
            subjects. should sum to 1 and supposedly it has been tested before.

    Returns:
        out (pd.DataFrame): a pd.DataFrame that contains the info of all files
            by subject where the 'category' column has been set to either
            train or test depending the result of the random draw.
            The value of test or train is the same for a given subject.

    '''
    nSubjects = len(out.subject.unique())
    i_train = np.random.choice( np.arange(nSubjects), int(ratios[0] * nSubjects))
    train_or_test_by_subject = [
        'train' if i in i_train else 'test' for i in range(nSubjects)]
    images_per_subject = out.groupby(["subject"]).category.count().values
    out.category = list(np.repeat(train_or_test_by_subject,
                                  images_per_subject))
    return(out)
spg.py 文件源码 项目:muesr 作者: bonfus 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_op(self):
        """Returns all symmetry operations (including inversions and
        subtranslations), but unlike get_symop(), they are returned as
        two ndarrays."""
        if self.centrosymmetric:
            rot = np.tile(np.vstack((self.rotations, -self.rotations)), 
                          (self.nsubtrans, 1, 1))
            trans = np.tile(np.vstack((self.translations, -self.translations)),
                            (self.nsubtrans, 1))
            trans += np.repeat(self.subtrans, 2 * len(self.rotations), axis=0)
            trans = np.mod(trans, 1)
        else:
            rot = np.tile(self.rotations, (self.nsubtrans, 1, 1))
            trans = np.tile(self.translations, (self.nsubtrans, 1))
            trans += np.repeat(self.subtrans, len(self.rotations), axis=0)
            trans = np.mod(trans, 1)
        return rot, trans
test_backends.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_shape_operations(self):
        # concatenate
        xval = np.random.random((4, 3))
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        yval = np.random.random((4, 2))
        yth = KTH.variable(yval)
        ytf = KTF.variable(yval)
        zth = KTH.eval(KTH.concatenate([xth, yth], axis=-1))
        ztf = KTF.eval(KTF.concatenate([xtf, ytf], axis=-1))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-05)

        check_single_tensor_operation('reshape', (4, 2), shape=(8, 1))
        check_single_tensor_operation('permute_dimensions', (4, 2, 3),
                                      pattern=(2, 0, 1))
        check_single_tensor_operation('repeat', (4, 1), n=3)
        check_single_tensor_operation('flatten', (4, 1))
        check_single_tensor_operation('expand_dims', (4, 3), dim=-1)
        check_single_tensor_operation('expand_dims', (4, 3, 2), dim=1)
        check_single_tensor_operation('squeeze', (4, 3, 1), axis=2)
        check_single_tensor_operation('squeeze', (4, 1, 1), axis=1)
        check_composed_tensor_operations('reshape', {'shape': (4, 3, 1, 1)},
                                         'squeeze', {'axis': 2},
                                         (4, 3, 1, 1))
vbutils.py 文件源码 项目:chemblnet 作者: jaak-s 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, name, shape, initial_stdev = 2.0, initial_prec = 5.0, a0 = 1.0, b0 = 1.0):
        mean_std = 1.0 / np.sqrt(shape[-1])
        with tf.variable_scope(name) as scope:
            self.mean   = tf.Variable(tf.random_uniform(shape, minval=-mean_std, maxval=mean_std))
            self.logvar = tf.Variable(np.log(initial_stdev**2.0) * np.ones(shape), name = "logvar", dtype = tf.float32)
            self.prec   = np.repeat(initial_prec, shape[-1])
            self.prec_ph= tf.placeholder(shape=shape[-1], name="prec", dtype = tf.float32)
            self.var    = tf.exp(self.logvar, name = "var")
            self.a0     = a0
            self.b0     = b0
            self.shape  = shape

#    def prec_div(self):
#        return - tf.reduce_sum(gammaPrior(self.prec_a, self.prec_b, self.a0, self.b0))

    ## outputs E_q[ log N( x | 0, prec^-1) ] + Entropy(q(x))
    ## where x is the normally distributed variable
scaffold.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def supercell(self, scale_mat):
        """
        Get the supercell of the origin gcell
        scale_mat is similar as H matrix in superlattice generator
        """
        # return self.__class__(...)
        sarr_lat = np.matmul(scale_mat, self.lattice)
        # coor_conv_pos = np.matmul(self.positions, self.lattice)
        # o_conv_pos = np.matmul(coor_conv_pos, np.linalg.inv(scale_mat))
        o_conv_pos = np.matmul(self.positions, np.linalg.inv(scale_mat))
        o_pos = self.get_frac_from_mat(scale_mat)

        l_of_positions = [i for i in map(lambda x: x+o_pos, list(o_conv_pos))]
        pos = np.concatenate(l_of_positions, axis=0)

        n = scale_mat.diagonal().prod()
        numbers = np.repeat(self.numbers, n)

        return self.__class__(sarr_lat, pos, numbers)
scaffold.py 文件源码 项目:ababe 作者: unkcpz 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def in_euclidean_discance(self, pos, center, r):
        """
            A helper function to return true or false.
            Decided whether a position(frac) inside a
            distance restriction.
        """
        from scipy.spatial.distance import euclidean as euclidean_discance
        from itertools import product

        cart_cent = self.get_cartesian_from_frac(center)
        trans = np.array([i for i in product([-1, 0, 1], repeat=3)])
        allpos = pos + trans
        for p in allpos:
            cart_p = self.get_cartesian_from_frac(p)
            if euclidean_discance(cart_p, cart_cent) < r:
                return True
                break

        return False
cochleagram_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def cochleagram_extractor(xx, sr, win_len, shift_len, channel_number, win_type):
    fcoefs, f = make_erb_filters(sr, channel_number, 50)
    fcoefs = np.flipud(fcoefs)
    xf = erb_frilter_bank(xx, fcoefs)

    if win_type == 'hanning':
        window = np.hanning(channel_number)
    elif win_type == 'hamming':
        window = np.hamming(channel_number)
    elif win_type == 'triangle':
        window = (1 - (np.abs(channel_number - 1 - 2 * np.arange(1, channel_number + 1, 1)) / (channel_number + 1)))
    else:
        window = np.ones(channel_number)
    window = window.reshape((channel_number, 1))

    xe = np.power(xf, 2.0)
    frames = 1 + ((np.size(xe, 1)-win_len) // shift_len)
    cochleagram = np.zeros((channel_number, frames))
    for i in range(frames):
        one_frame = np.multiply(xe[:, i*shift_len:i*shift_len+win_len], np.repeat(window, win_len, 1))
        cochleagram[:, i] = np.sqrt(np.mean(one_frame, 1))

    cochleagram = np.where(cochleagram == 0.0, np.finfo(float).eps, cochleagram)
    return cochleagram
feature_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def postaud(x, fmax, fbtype=None):
    if fbtype is None:
        fbtype = 'bark'
    nbands = x.shape[0]
    nframes = x.shape[1]
    nfpts = nbands
    if fbtype == 'bark':
        bancfhz = bark2freq(np.linspace(0, freq2bark(fmax), nfpts))
    fsq = bancfhz * bancfhz
    ftmp = fsq + 1.6e5
    eql = ((fsq/ftmp)**2) * ((fsq + 1.44e6)/(fsq + 9.61e6))
    eql = eql.reshape(np.size(eql), 1)
    z = np.repeat(eql, nframes, axis=1) * x
    z = z ** (1./3.)
    y = np.vstack((z[1, :], z[1:nbands-1, :], z[nbands-2, :]))
    return y
feature_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def lpc2cep(a, nout=None):
    nin = np.size(a, 0)
    ncol = np.size(a, 1)
    order = nin - 1
    if nout is None:
        nout = order + 1
    c = np.zeros((nout, ncol))
    c[0, :] = -1. * np.log(a[0, :])
    renormal_coef = np.reshape(a[0,:], (1, ncol))
    renormal_coef = np.repeat(renormal_coef, nin, axis=0)
    a = a / renormal_coef
    for n in range(1, nout):
        sumn = np.zeros(ncol)
        for m in range(1, n+1):
            sumn = sumn + (n-m) * a[m, :] * c[n-m, :]
        c[n, :] = -1. * (a[n, :] + 1. / n * sumn)
    return c
rasta_plp_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def postaud(x, fmax, fbtype=None):
    if fbtype is None:
        fbtype = 'bark'
    nbands = x.shape[0]
    nframes = x.shape[1]
    nfpts = nbands
    if fbtype == 'bark':
        bancfhz = bark2freq(np.linspace(0, freq2bark(fmax), nfpts))
    fsq = bancfhz * bancfhz
    ftmp = fsq + 1.6e5
    eql = ((fsq/ftmp)**2) * ((fsq + 1.44e6)/(fsq + 9.61e6))
    '''
    plt.figure()
    plt.plot(eql)
    plt.show()
    '''
    eql = eql.reshape(np.size(eql), 1)
    z = np.repeat(eql, nframes, axis=1) * x
    z = z ** (1./3.)
    y = np.vstack((z[1, :], z[1:nbands-1, :], z[nbands-2, :]))
    return y
rasta_plp_extractor.py 文件源码 项目:speech_feature_extractor 作者: ZhihaoDU 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def lpc2cep(a, nout=None):
    nin = np.size(a, 0)
    ncol = np.size(a, 1)
    order = nin - 1
    if nout is None:
        nout = order + 1
    c = np.zeros((nout, ncol))
    c[0, :] = -1. * np.log(a[0, :])
    renormal_coef = np.reshape(a[0,:], (1, ncol))
    renormal_coef = np.repeat(renormal_coef, nin, axis=0)
    a = a / renormal_coef
    for n in range(1, nout):
        sumn = np.zeros(ncol)
        for m in range(1, n+1):
            sumn = sumn + (n-m) * a[m, :] * c[n-m, :]
        c[n, :] = -1. * (a[n, :] + 1. / n * sumn)
    return c
im2col.py 文件源码 项目:numpy_cnn 作者: Ryanshuai 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_im2col_indices(x_shape, filter_shape, stride, pad):
    BS, in_D, in_H, in_W = x_shape
    f_H, f_W = filter_shape
    pad_H, pad_W = pad
    stride_H, stride_W = stride

    out_H = int((in_H + 2*pad_H - f_H) / stride_W + 1)
    out_W = int((in_W + 2*pad_W - f_W) / stride_W + 1)

    i_col = np.repeat(np.arange(f_H), f_W)
    i_col = np.tile(i_col, in_D).reshape(-1, 1)
    i_row = stride_H * np.repeat(np.arange(out_H), out_W)
    i = i_col + i_row #shape=(in_D*f_H*f_W,out_H*out_W)

    j_col = np.tile(np.arange(f_W), f_H)
    j_col = np.tile(j_col, in_D).reshape(-1, 1)
    j_row = stride_W * np.tile(np.arange(out_W), out_H)
    j = j_col + j_row #shape=(in_D*f_H*f_W,out_W*out_H)

    c = np.repeat(np.arange(in_D), f_H * f_W).reshape(-1, 1) #shape=(in_D*f_H*f_W,1)

    return (c, i, j)
effects.py 文件源码 项目:py-noisemaker 作者: aayars 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _conform_kernel_to_tensor(kernel, tensor, shape):
    """ Re-shape a convolution kernel to match the given tensor's color dimensions. """

    l = len(kernel)

    channels = shape[-1]

    temp = np.repeat(kernel, channels)

    temp = tf.reshape(temp, (l, l, channels, 1))

    temp = tf.cast(temp, tf.float32)

    temp /= tf.maximum(tf.reduce_max(temp), tf.reduce_min(temp) * -1)

    return temp
reflector.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def specular_reflection_matrix(self, frequency, eps_1, mu1, npol, compute_coherent_only):

        if npol > 2:
            raise NotImplementedError("active model is not yet implemented, need modification for the third compunant")

        if self.backscatter_coefficient is not None:
            raise NotImplementedError("backscatter_coefficient to be implemented")

        if self.specular_reflection is None and self.backscatter_coefficient is None:
            self.specular_reflection = 1

        if isinstance(self.specular_reflection, dict):  # we have a dictionary with polarization
            spec_refl_coeff = np.empty(npol*len(mu1))
            spec_refl_coeff[0::npol] = self._get_refl(self.specular_reflection['V'], mu1)
            spec_refl_coeff[1::npol] = self._get_refl(self.specular_reflection['H'], mu1)
        else:  # we have a scalar, both polarization are the same
            spec_refl_coeff = np.repeat(self._get_refl(self.specular_reflection, mu1), npol)

        return scipy.sparse.diags(spec_refl_coeff, 0)
reflector.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def absorption_matrix(self, frequency, eps_1, mu1, npol, compute_coherent_only):

        if self.specular_reflection is None and self.backscatter_coefficient is None:
            self.specular_reflection = 1

        if npol > 2:
            raise NotImplementedError("active model is not yet implemented, need modification for the third compunant")

        if isinstance(self.specular_reflection, dict):  # we have a dictionary with polarization
            abs_coeff = np.empty(npol*len(mu1))
            abs_coeff[0::npol] = 1 - self._get_refl(self.specular_reflection['V'], mu1)
            abs_coeff[1::npol] = 1 - self._get_refl(self.specular_reflection['H'], mu1)
        else:  # we have a scalar, both polarization are the same
            abs_coeff = 1 - np.repeat(self._get_refl(self.specular_reflection, mu1), npol)

        return scipy.sparse.diags(abs_coeff, 0)
reflector_backscatter.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def specular_reflection_matrix(self, frequency, eps_1, mu1, npol, compute_coherent_only):

        if npol > 2 and not hasattr(self, "stop_pol2_warning"):
            print("active model is not yet fully implemented, need modification for the third component")  # !!!
            self.stop_pol2_warning = True

        if self.specular_reflection is None and self.backscattering_coefficient is None:
            self.specular_reflection = 1

        if isinstance(self.specular_reflection, dict):  # we have a dictionary with polarization
            spec_refl_coeff = np.empty(npol*len(mu1))
            spec_refl_coeff[0::npol] = self._get_refl(self.specular_reflection['V'], mu1)
            spec_refl_coeff[1::npol] = self._get_refl(self.specular_reflection['H'], mu1)
        else:  # we have a scalar, both polarization are the same
            spec_refl_coeff = np.repeat(self._get_refl(self.specular_reflection, mu1), npol)

        return scipy.sparse.diags(spec_refl_coeff, 0)
reflector_backscatter.py 文件源码 项目:smrt 作者: smrt-model 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def absorption_matrix(self, frequency, eps_1, mu1, npol, compute_coherent_only):

        if self.specular_reflection is None and self.backscattering_coefficient is None:
            self.specular_reflection = 1

        if npol > 2 and not hasattr(self, "stop_pol2_warning"):
            print("active model is not yet fully implemented, need modification for the third component") # !!!
            self.stop_pol2_warning = True

        if isinstance(self.specular_reflection, dict):  # we have a dictionary with polarization
            abs_coeff = np.empty(npol*len(mu1))
            abs_coeff[0::npol] = 1 - self._get_refl(self.specular_reflection['V'], mu1)
            abs_coeff[1::npol] = 1 - self._get_refl(self.specular_reflection['H'], mu1)
        else:  # we have a scalar, both polarization are the same
            abs_coeff = 1 - np.repeat(self._get_refl(self.specular_reflection, mu1), npol)

        return scipy.sparse.diags(abs_coeff, 0)
stream.py 文件源码 项目:Auspex 作者: BBN-Q 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def cartesian(arrays, out=None, dtype='f'):
    """http://stackoverflow.com/questions/28684492/numpy-equivalent-of-itertools-product"""

    arrays = [np.asarray(x) for x in arrays]
    # dtype = arrays[0].dtype

    n = np.prod([x.size for x in arrays])
    if out is None:
        out = np.zeros([n, len(arrays)], dtype=dtype)

    m = int(n / arrays[0].size)
    out[:,0] = np.repeat(arrays[0], m)
    if arrays[1:]:
        cartesian(arrays[1:], out=out[0:m,1:])
        for j in range(1, arrays[0].size):
            out[j*m:(j+1)*m,1:] = out[0:m,1:]
    return out
csl.py 文件源码 项目:srep 作者: Answeror 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, root, combo):
        subject, session = decode_subject_and_session(combo.subject)
        path = os.path.join(root,
                            'subject%d' % subject,
                            'session%d' % session,
                            'gest%d.mat' % combo.gesture)
        if path not in self.memo:
            data = _get_data(path, self.preprocess)
            self.memo[path] = data
            logger.debug('{}', path)
        else:
            data = self.memo[path]
        assert combo.trial < len(data), str(combo)
        data = data[combo.trial].copy()
        gesture = np.repeat(combo.gesture, len(data))
        subject = np.repeat(combo.subject, len(data))
        return Trial(data=data, gesture=gesture, subject=subject)
atom.py 文件源码 项目:exatomic 作者: exa-analytics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def add_vibrational_mode(uni, freqdx):
    displacements = uni.frequency.displacements(freqdx)
    if not all(displacements['symbol'] == uni.atom['symbol']):
        print('Mismatch in ordering of atoms and frequencies.')
        return
    displaced = []
    frames = []
    # Should these only be absolute values?
    factor = np.abs(np.sin(np.linspace(-4*np.pi, 4*np.pi, 200)))
    for fac in factor:
        moved = uni.atom.copy()
        moved['x'] += displacements['dx'].values * fac
        moved['y'] += displacements['dy'].values * fac
        moved['z'] += displacements['dz'].values * fac
        displaced.append(moved)
        frames.append(uni.frame)
    movie = pd.concat(displaced).reset_index()
    movie['frame'] = np.repeat(range(len(factor)), len(uni.atom))
    uni.frame = pd.concat(frames).reset_index()
    uni.atom = movie


问题


面经


文章

微信
公众号

扫码关注公众号