python类clip()的实例源码

env_converter.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def clip(val, minval, maxval):
    if val > HUGE_VALUE:
        val = HUGE_VALUE
    if val < EPSILON:
        val = EPSILON
    if val < minval:
        return minval
    if val > maxval:
        return maxval
    return val
env_converter.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _clip(self, action):
        maxs = self.env.action_space.high
        mins = self.env.action_space.low
        if isinstance(action, np.ndarray):
            np.clip(action, mins, maxs, out=action)
        elif isinstance(action, list):
            for i in range(len(action)):
                action[i] = clip(action[i], mins[i], maxs[i])
        else:
            action = clip(action, mins[0], maxs[0])
        return action
env_converter.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, env, shape, clip=10.0, update_freq=100):
        self.env = env
        self.clip = clip
        self.update_freq = update_freq
        self.count = 0
        self.sum = 0.0
        self.sum_sqr = 0.0
        self.mean = np.zeros(shape, dtype=np.double)
        self.std = np.ones(shape, dtype=np.double)
env_converter.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def _update(self):
        self.mean = self.sum / self.count
        self.std = self.sum_sqr / self.count - self.mean**2
        self.std = np.clip(self.std, 1e-2, 1e9)**0.5
env_converter.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def normalize(self, new_state):
        # Update
        self.count += 1
        self.sum += new_state
        self.sum_sqr += new_state**2
        if self.count % self.update_freq == 0 and False:
            self._update()
        # Normalize
        new_state = new_state - self.mean
        new_state = new_state / self.std
        new_state = np.clip(new_state, -self.clip, self.clip)
        return new_state
image_as_mod3d_2dmask.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def random_channel_shift(x, intensity, channel_axis=0):
    x = np.rollaxis(x, channel_axis, 0)
    min_x, max_x = np.min(x), np.max(x)
    channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x)
                      for x_channel in x]
    x = np.stack(channel_images, axis=0)
    x = np.rollaxis(x, 0, channel_axis + 1)
    return x
Visualizer.py 文件源码 项目:rank-ordered-autoencoder 作者: paulbertens 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def saveFinalPlots(self, errors_train, errors_test, sparsity_train, sparsity_test, errors_train_vector, errors_test_vector, epoch=0):
        #plot errors
        plt.figure(2, figsize=(10, 7))
        plt.clf()
        plt.plot(np.arange(len(errors_train)), errors_train, label='train error')
        plt.plot(np.arange(len(errors_train)), errors_test, label='test error')
        plt.colors()
        plt.legend()
        plt.title('Reconstruction error convergence')
        plt.xlabel('t')
        plt.ylabel('Reconstruction error')
        plt.savefig('plots/Reconstruction_errors_'+str(epoch)+'.pdf')

        #plot sparsity, real and non-zero
        plt.figure(3, figsize=(10, 7))
        plt.clf()
        plt.plot(np.arange(len(sparsity_train)), sparsity_train, label='train error')
        plt.plot(np.arange(len(sparsity_test)), sparsity_test, label='test error')
        plt.colors()
        plt.legend()
        plt.title('Objective function error convergence')
        plt.xlabel('t')
        plt.ylabel('E')
        plt.savefig('plots/Sparsity_'+str(epoch)+'.pdf')

        # plot reconstruction error output progression over time
        plt.figure(12, figsize=(10, 7))
        plt.clf()
        image=plt.imshow(np.clip(np.asarray(errors_train_vector).T, 0, 1), interpolation='nearest', aspect='auto', origin='lower')
        plt.xlabel('t')
        plt.ylabel('Output units \n (Rank Ordered)')
        plt.colors()
        plt.colorbar(image, label='reconstruction error')
        plt.title('Progressive reconstruction input error convergence')
        plt.savefig('plots/Reconstruction_errors_vector_' + str(epoch) + '.pdf')
RankOrderedAutoencoder.py 文件源码 项目:rank-ordered-autoencoder 作者: paulbertens 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def activation(self, X, out=None):
        return np.clip(X, 0, 1, out=out)
RankOrderedAutoencoder.py 文件源码 项目:rank-ordered-autoencoder 作者: paulbertens 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def clip(self, X, out=None):
        return np.clip(X, -1, 1, out=out)
RankOrderedAutoencoder.py 文件源码 项目:rank-ordered-autoencoder 作者: paulbertens 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward_prop(self):
        # backprop
        self.output_error = np.sum(self.errors * self.weights, axis=0).reshape(1, -1)
        self.output_error /= self.weights.shape[0]
        self.output_error *= self.derivative(self.output_raw, self.output_error)
        # clip gradient to not exceed zero
        self.output_error[self.output_raw > 0] = \
            np.maximum(-self.output_raw[self.output_raw > 0],self.output_error[self.output_raw > 0])
        self.output_error[self.output_raw < 0] = \
            np.minimum(-self.output_raw[self.output_raw < 0],self.output_error[self.output_raw < 0])
RankOrderedAutoencoder.py 文件源码 项目:rank-ordered-autoencoder 作者: paulbertens 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def update_weights_final(self):
        # clip the gradient norm
        norm = np.sqrt(np.sum(self.gradient ** 2, axis=0))
        norm_check = norm > self.norm_limit
        self.gradient[:, norm_check] = ((self.gradient[:, norm_check]) / norm[norm_check]) * self.norm_limit
        # update weights
        self.weights += self.gradient * (self.learning_rate)
        # update output average for sorting weights
        self.output_average *= 0.99999
        self.output_average += self.output.ravel() * 0.00001
mcmc_sampler.py 文件源码 项目:bnn-analysis 作者: myshkov 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _sample_noise_precision(self):
        prior_observations = .1 * self.batch_size
        shape = prior_observations + self.batch_size / 2
        rate = prior_observations / self._noise_precision_value + np.mean(self._target_loss_ema) / 2
        scale = 1. / rate

        sample = np.clip(np.random.gamma(shape, scale), 10., 1000.)

        return sample
mcmc_sampler.py 文件源码 项目:bnn-analysis 作者: myshkov 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _sample_weights_precision(self):
        prior_observations = .1 * self.position_size
        shape = prior_observations + self.position_size / 2
        rate = prior_observations / self._weights_precision_value + np.mean(self._weight_norm_ema) / 2

        scale = 1. / rate
        sample = np.clip(np.random.gamma(shape, scale), .1, 10.)
        return sample
lstm.py 文件源码 项目:lain 作者: llllllllll 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _sample_weights(self, aim_error, accuracy_error):
        """Sample weights based on the error.

        Parameters
        ----------
        aim_error : np.ndarray
            The aim errors for each sample.
        accuracy_error : np.ndarray
            The accuracy error errors for each sample.

        Returns
        -------
        weights : np.ndarray
            The weights for each sample.

        Notes
        -----
        This weighs samples based on their standard deviations above the mean
        with some clipping.
        """
        aim_zscore = (aim_error - aim_error.mean()) / aim_error.std()
        aim_weight = np.clip(aim_zscore, 1, 4) / 4

        accuracy_zscore = (
            accuracy_error - accuracy_error.mean()
        ) / accuracy_error.std()
        accuracy_weight = np.clip(accuracy_zscore, 1, 4) / 4

        return {
            'aim_error': aim_weight,
            'accuracy_error': accuracy_weight,
        }
provider.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
    """ Randomly jitter points. jittering is per point.
        Input:
          BxNx3 array, original batch of point clouds
        Return:
          BxNx3 array, jittered batch of point clouds
    """
    B, N, C = batch_data.shape
    assert(clip > 0)
    jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)
    jittered_data += batch_data
    return jittered_data
QuickDraw_noisy_classifier.py 文件源码 项目:Google-QuickDraw 作者: ankonzoid 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def add_noise(x_clean, noise_factor):
    x = x_clean.copy()
    x_shape = x.shape
    x = x + noise_factor * 255 * (np.random.normal(loc=0.0, scale=1.0, size=x_shape) + 1) / 2
    x_noisy = np.clip(x, 0., 255.)
    return x_noisy

# converts image list to a normed image list (used as input for NN)
image.py 文件源码 项目:guided-filter 作者: lisabug 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def to_32F(image):
    if image.max() > 1.0:
        image = image / 255.0
    return np.clip(np.float32(image), 0, 1)
image.py 文件源码 项目:guided-filter 作者: lisabug 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def to_8U(image):
    if image.max() <= 1.0:
        image = image * 255.0
    return np.clip(np.uint8(image), 0, 255)
basic_model.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def applyColorAugmentation(self, img, std=0.55, gamma=2.5):
    '''Applies random color augmentation following [1].  An additional gamma
    transformation is added.

    [1] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton.  ImageNet
        Classification with Deep Convolutional Neural Networks.  NIPS 2012.
    '''

    alpha = np.clip(np.random.normal(0, std, size=3), -1.3 * std, 1.3 * std)
    perturbation = self.data_evecs.dot((alpha * np.sqrt(self.data_evals)).T)
    gamma = 1.0 - sum(perturbation) / gamma
    return np.power(np.clip(img + perturbation, 0., 1.), gamma)
    return np.clip((img + perturbation), 0., 1.)
data_preparation.py 文件源码 项目:sea-lion-counter 作者: rdinse 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def applyColorAugmentation(img, std=0.5):
  '''Applies random color augmentation following [1].

  [1] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. \
    ImageNet Classification with Deep Convolutional Neural Networks. \
    NIPS 2012.'''

  alpha = np.clip(np.random.normal(0, std, size=3), -2 * std, 2. * std)
  perturbation = sld_evecs.dot((alpha * np.sqrt(sld_evals)).T)
  gamma = 1.0 - sum(perturbation) / 3.
  return np.power(np.clip(img + perturbation, 0., 1.), gamma)
  return np.clip((img + perturbation), 0., 1.)


问题


面经


文章

微信
公众号

扫码关注公众号