def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_class_config.build_model()
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
python类prod()的实例源码
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_class_config.build_model()
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_class_config.build_model()
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_class_config.build_model()
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_class_config.build_model()
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_class_config.build_model()
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model()
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def build_model():
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
metadata = utils.load_pkl(metadata_path)
print 'Build model'
model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
all_layers = nn.layers.get_all_layers(model.l_out)
num_params = nn.layers.count_params(model.l_out)
print ' number of parameters: %d' % num_params
print string.ljust(' layer output shapes:', 36),
print string.ljust('#params:', 10),
print 'output shape:'
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(num_param.__str__(), 10)
print ' %s %s %s' % (name, num_param, layer.output_shape)
nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
return model
def adjust_prediction(self, probability, image):
crf = dcrf.DenseCRF(np.prod(probability.shape), 2)
# crf = dcrf.DenseCRF(np.prod(probability.shape), 1)
binary_prob = np.stack((1 - probability, probability), axis=0)
unary = unary_from_softmax(binary_prob)
# unary = unary_from_softmax(np.expand_dims(probability, axis=0))
crf.setUnaryEnergy(unary)
# per dimension scale factors
sdims = [self.sdims] * 3
smooth = create_pairwise_gaussian(sdims=sdims, shape=probability.shape)
crf.addPairwiseEnergy(smooth, compat=2)
if self.schan:
# per channel scale factors
schan = [self.schan] * 6
appearance = create_pairwise_bilateral(sdims=sdims, schan=schan, img=image, chdim=3)
crf.addPairwiseEnergy(appearance, compat=2)
result = crf.inference(self.iter)
crf_prediction = np.argmax(result, axis=0).reshape(probability.shape).astype(np.float32)
return crf_prediction
def _sample_cond_single(rng, marginal_pmf, n_group, out, eps):
"""Single sample from conditional probab. (call :func:`self.sample`)"""
n_sites = len(marginal_pmf[-1])
# Probability of the incomplete output. Empty output has unit probab.
out_p = 1.0
# `n_out` sites of the output have been sampled. We will add
# at most `n_group` sites to the output at a time.
for n_out in range(0, n_sites, n_group):
# Select marginal probability distribution on (at most)
# `n_out + n_group` sites.
p = marginal_pmf[min(n_sites, n_out + n_group)]
# Obtain conditional probab. from joint `p` and marginal `out_p`
p = p.get(tuple(out[:n_out]) + (slice(None),) * (len(p) - n_out))
p = project_pmf(mp.prune(p).to_array() / out_p, eps, eps)
# Sample from conditional probab. for next `n_group` sites
choice = rng.choice(p.size, p=p.flat)
out[n_out:n_out + n_group] = np.unravel_index(choice, p.shape)
# Update probability of the partial output
out_p *= np.prod(p.flat[choice])
# Verify we have the correct partial output probability
p = marginal_pmf[-1].get(tuple(out)).to_array()
assert abs(p - out_p) <= eps
def _rcanonicalize(self, to_site):
"""Left-canonicalizes all local tensors _ltens[:to_site] in place
:param to_site: Index of the site up to which canonicalization is to be
performed
"""
assert 0 <= to_site < len(self), 'to_site={!r}'.format(to_site)
lcanon, rcanon = self._lt.canonical_form
for site in range(lcanon, to_site):
ltens = self._lt[site]
q, r = qr(ltens.reshape((-1, ltens.shape[-1])))
# if ltens.shape[-1] > prod(ltens.phys_shape) --> trivial comp.
# can be accounted by adapting rank here
newtens = (q.reshape(ltens.shape[:-1] + (-1,)),
matdot(r, self._lt[site + 1]))
self._lt.update(slice(site, site + 2), newtens,
canonicalization=('left', None))