python类all()的实例源码

test_functions.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
tools.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def assert_arrays_almost_equal(a, b, threshold, dtype=False):
    '''
    Check if two arrays have the same shape and contents that differ
    by abs(a - b) <= threshold for all elements.

    If threshold is None, do an absolute comparison rather than a relative
    comparison.
    '''
    if threshold is None:
        return assert_arrays_equal(a, b, dtype=dtype)

    assert isinstance(a, np.ndarray), "a is a %s" % type(a)
    assert isinstance(b, np.ndarray), "b is a %s" % type(b)
    assert a.shape == b.shape, "%s != %s" % (a, b)
    #assert a.dtype == b.dtype, "%s and %b not same dtype %s %s" % (a, b,
    #                                                               a.dtype,
    #                                                               b.dtype)
    if a.dtype.kind in ['f', 'c', 'i']:
        assert (abs(a - b) < threshold).all(), \
            "abs(%s - %s)    max(|a - b|) = %s    threshold:%s" % \
            (a, b, (abs(a - b)).max(), threshold)

    if dtype:
        assert a.dtype == b.dtype, \
            "%s and %s not same dtype %s and %s" % (a, b, a.dtype, b.dtype)
colormap.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def getColors(self, mode=None):
        """Return list of all color stops converted to the specified mode.
        If mode is None, then no conversion is done."""
        if isinstance(mode, basestring):
            mode = self.enumMap[mode.lower()]

        color = self.color
        if mode in [self.BYTE, self.QCOLOR] and color.dtype.kind == 'f':
            color = (color * 255).astype(np.ubyte)
        elif mode == self.FLOAT and color.dtype.kind != 'f':
            color = color.astype(float) / 255.

        if mode == self.QCOLOR:
            color = [QtGui.QColor(*x) for x in color]

        return color
ViewBox.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def register(self, name):
        """
        Add this ViewBox to the registered list of views. 

        This allows users to manually link the axes of any other ViewBox to
        this one. The specified *name* will appear in the drop-down lists for 
        axis linking in the context menus of all other views.

        The same can be accomplished by initializing the ViewBox with the *name* attribute.
        """
        ViewBox.AllViews[self] = None
        if self.name is not None:
            del ViewBox.NamedViews[self.name]
        self.name = name
        if name is not None:
            ViewBox.NamedViews[name] = self
            ViewBox.updateAllViewLists()
            sid = id(self)
            self.destroyed.connect(lambda: ViewBox.forgetView(sid, name) if (ViewBox is not None and 'sid' in locals() and 'name' in locals()) else None)
            #self.destroyed.connect(self.unregister)
test_functions.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
test_srttransform3d.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def testMatrix():
    """
    SRTTransform3D => Transform3D => SRTTransform3D
    """
    tr = pg.SRTTransform3D()
    tr.setRotate(45, (0, 0, 1))
    tr.setScale(0.2, 0.4, 1)
    tr.setTranslate(10, 20, 40)
    assert tr.getRotation() == (45, QtGui.QVector3D(0, 0, 1))
    assert tr.getScale() == QtGui.QVector3D(0.2, 0.4, 1)
    assert tr.getTranslation() == QtGui.QVector3D(10, 20, 40)

    tr2 = pg.Transform3D(tr)
    assert np.all(tr.matrix() == tr2.matrix())

    # This is the most important test:
    # The transition from Transform3D to SRTTransform3D is a tricky one.
    tr3 = pg.SRTTransform3D(tr2)
    assert_array_almost_equal(tr.matrix(), tr3.matrix())
    assert_almost_equal(tr3.getRotation()[0], tr.getRotation()[0])
    assert_array_almost_equal(tr3.getRotation()[1], tr.getRotation()[1])
    assert_array_almost_equal(tr3.getScale(), tr.getScale())
    assert_array_almost_equal(tr3.getTranslation(), tr.getTranslation())
tools.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def assert_arrays_almost_equal(a, b, threshold, dtype=False):
    '''
    Check if two arrays have the same shape and contents that differ
    by abs(a - b) <= threshold for all elements.

    If threshold is None, do an absolute comparison rather than a relative
    comparison.
    '''
    if threshold is None:
        return assert_arrays_equal(a, b, dtype=dtype)

    assert isinstance(a, np.ndarray), "a is a %s" % type(a)
    assert isinstance(b, np.ndarray), "b is a %s" % type(b)
    assert a.shape == b.shape, "%s != %s" % (a, b)
    #assert a.dtype == b.dtype, "%s and %b not same dtype %s %s" % (a, b,
    #                                                               a.dtype,
    #                                                               b.dtype)
    if a.dtype.kind in ['f', 'c', 'i']:
        assert (abs(a - b) < threshold).all(), \
            "abs(%s - %s)    max(|a - b|) = %s    threshold:%s" % \
            (a, b, (abs(a - b)).max(), threshold)

    if dtype:
        assert a.dtype == b.dtype, \
            "%s and %s not same dtype %s and %s" % (a, b, a.dtype, b.dtype)
mixer_test.py 文件源码 项目:Projects 作者: it2school 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _test_array_argument(self, format, a, test_pass):
        from numpy import array, all as all_

        try:
            snd = mixer.Sound(array=a)
        except ValueError:
            if not test_pass:
                return
            self.fail("Raised ValueError: Format %i, dtype %s" %
                      (format, a.dtype))
        if not test_pass:
            self.fail("Did not raise ValueError: Format %i, dtype %s" %
                      (format, a.dtype))
        a2 = array(snd)
        a3 = a.astype(a2.dtype)
        lshift = abs(format) - 8 * a.itemsize
        if lshift >= 0:
            # This is asymmetric with respect to downcasting.
            a3 <<= lshift
        self.assert_(all_(a2 == a3),
                     "Format %i, dtype %s" % (format, a.dtype))
test_mask_to_seq.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_image_data_mask(self):
        mask_cache_key = str(id(self.model.input)) + '_' + str(id(None))
        mask_tensor = self.model._output_mask_cache[mask_cache_key]
        mask = mask_tensor.eval(
            session=K.get_session(),
            feed_dict={self.model.input: self.data}
        )
        self.assertTrue(
            np.all(
                mask[:, self.x_start:self.x_end]
            )
        )
        self.assertFalse(
            np.any(
                mask[:, :self.x_start]
            )
        )
        self.assertFalse(
            np.any(
                mask[:, self.x_end:]
            )
        )
analysis.py 文件源码 项目:risk-slim 作者: ustunb 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_calibration_metrics(model, data):
    scores = (data['X'] * data['Y']).dot(model)

    #distinct scores

    #compute calibration error at each score

    full_metrics = {
        'scores': float('nan'),
        'count': float('nan'),
        'predicted_risk': float('nan'),
        'empirical_risk': float('nan')
    }

    cal_error = np.sqrt(np.sum(a*(a-b)^2)) ( - full_metrics['empirical_risk'])

    summary_metrics = {
        'mean_calibration_error': float('nan')
    }

    #counts
    #metrics
    #mean calibration error across all scores

    pass
transformations.py 文件源码 项目:autolab_core 作者: BerkeleyAutomation 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
    """Try import all public attributes from module into global namespace.

    Existing attributes with name clashes are renamed with prefix.
    Attributes starting with underscore are ignored by default.

    Return True on successful import.

    """
    try:
        module = __import__(module_name)
    except ImportError:
        if warn:
            warnings.warn("Failed to import module " + module_name)
    else:
        for attr in dir(module):
            if ignore and attr.startswith(ignore):
                continue
            if prefix:
                if attr in globals():
                    globals()[prefix + attr] = globals()[attr]
                elif warn:
                    warnings.warn("No Python implementation of " + attr)
            globals()[attr] = getattr(module, attr)
        return True
lang2vec.py 文件源码 项目:lang-reps 作者: chaitanyamalaviya 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get(languages, feature_set_str, header=False, random=False, minimal=False):

    lang_codes = languages.split()
    feature_names, feature_values = get_concatenated_sets(lang_codes, feature_set_str)
    feature_names = np.array([ f.replace(" ","_") for f in feature_names ])
    feats = {}

    if minimal:
        mask = np.all(feature_values == 0.0, axis=0)
        mask |= np.all(feature_values == 1.0, axis=0)
        mask |= np.all(feature_values == -1.0, axis=0)
        unmasked_indices = np.where(np.logical_not(mask))
    else:
        unmasked_indices = np.where(np.ones(feature_values.shape[1]))

    if random:
        feature_values = np.random.random(feature_values.shape) >= 0.5

    if header:
        print("\t".join(['CODE']+list(feature_names[unmasked_indices])))
    feat_names = feature_names[unmasked_indices]

    for i, lang_code in enumerate(lang_codes):
        values = feature_values[i,unmasked_indices].ravel()
        #values = [ '--' if f == -1 else ("%0.4f"%f).rstrip("0").rstrip(".") for f in values ]
        feats[lang_code] = values
        #print("\t".join([lang_code]+values))
    return feats, feat_names

#if __name__ == '__main__':
#    argparser = argparse.ArgumentParser()
#    argparser.add_argument("languages", default='', help="The languages of interest, in ISO 639-3 codes, separated by spaces (e.g., \"deu eng fra swe\")")
#    argparser.add_argument("feature_set", default='', help="The feature set or sets of interest (e.g., \"syntax_knn\" or \"fam\"), joined by concatenation (+) or element-wise union (|).")
#    argparser.add_argument("-f", "--fields", default=False, action="store_true", help="Print feature names as the first row of data.")
#    argparser.add_argument("-r", "--random", default=False, action="store_true", help="Randomize all feature values (e.g., to make a control group).")
#    argparser.add_argument("-m", "--minimal", default=False, action="store_true", help="Suppress columns that are all 0, all 1, or all nulls.")
#    args = argparser.parse_args()
#    get(args.languages, args.feature_set, args.fields, args.random, args.minimal)
orthopoly.py 文件源码 项目:pyballd 作者: Yurlungur 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_integration_weights(order,nodes=None):
    """
    Returns the integration weights for Gauss-Lobatto quadrature
    as a function of the order of the polynomial we want to
    represent.
    See: https://en.wikipedia.org/wiki/Gaussian_quadrature
    See: arXive:gr-qc/0609020v1
    """
    if np.all(nodes == False):
        nodes=get_quadrature_points(order)
    if poly == polynomial.chebyshev.Chebyshev:
        weights = np.empty((order+1))
        weights[1:-1] = np.pi/order
        weights[0] = np.pi/(2*order)
        weights[-1] = weights[0]
        return weights
    elif poly == polynomial.legendre.Legendre:
        interior_weights = 2/((order+1)*order*poly.basis(order)(nodes[1:-1])**2)
        boundary_weights = np.array([1-0.5*np.sum(interior_weights)])
        weights = np.concatenate((boundary_weights,
                                  interior_weights,
                                  boundary_weights))
        return weights
    else:
        raise ValueError("Not a known polynomial type.")
        return False
model_pp_attachment.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def define_attention_model(self):
        '''
        Take necessary parts out of the model to get OntoLSTM attention.
        '''
        if not self.model:
            raise RuntimeError("Model not trained yet!")
        input_shape = self.model.get_input_shape_at(0)
        input_layer = Input(input_shape[1:], dtype='int32')  # removing batch size
        embedding_layer = None
        encoder_layer = None
        for layer in self.model.layers:
            if layer.name == "embedding":
                embedding_layer = layer
            elif layer.name == "onto_lstm":
                # We need to redefine the OntoLSTM layer with the learned weights and set return attention to True.
                # Assuming we'll want attention values for all words (return_sequences = True)
                if isinstance(layer, Bidirectional):
                    onto_lstm = OntoAttentionLSTM(input_dim=self.embed_dim, output_dim=self.embed_dim,
                                                  num_senses=self.num_senses, num_hyps=self.num_hyps,
                                                  use_attention=True, return_attention=True, return_sequences=True,
                                                  consume_less='gpu')
                    encoder_layer = Bidirectional(onto_lstm, weights=layer.get_weights())
                else:
                    encoder_layer = OntoAttentionLSTM(input_dim=self.embed_dim,
                                                      output_dim=self.embed_dim, num_senses=self.num_senses,
                                                      num_hyps=self.num_hyps, use_attention=True,
                                                      return_attention=True, return_sequences=True,
                                                      consume_less='gpu', weights=layer.get_weights())
                break
        if not embedding_layer or not encoder_layer:
            raise RuntimeError("Required layers not found!")
        attention_output = encoder_layer(embedding_layer(input_layer))
        self.attention_model = Model(inputs=input_layer, outputs=attention_output)
        print >>sys.stderr, "Attention model summary:"
        self.attention_model.summary()
        self.attention_model.compile(loss="mse", optimizer="sgd")  # Loss and optimizer do not matter!
test_FFT.py 文件源码 项目:mpiFFT4py 作者: spectralDNS 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_FFT(FFT):
    N = FFT.N
    if FFT.rank == 0:
        A = random(N).astype(FFT.float)
        if FFT.communication == 'AlltoallN':
            C = empty(FFT.global_complex_shape(), dtype=FFT.complex)
            C = rfftn(A, C, axes=(0,1,2))
            C[:, :, -1] = 0  # Remove Nyquist frequency
            A = irfftn(C, A, axes=(0,1,2))
        B2 = zeros(FFT.global_complex_shape(), dtype=FFT.complex)
        B2 = rfftn(A, B2, axes=(0,1,2))

    else:
        A = zeros(N, dtype=FFT.float)
        B2 = zeros(FFT.global_complex_shape(), dtype=FFT.complex)

    atol, rtol = (1e-10, 1e-8) if FFT.float is float64 else (5e-7, 1e-4)
    FFT.comm.Bcast(A, root=0)
    FFT.comm.Bcast(B2, root=0)

    a = zeros(FFT.real_shape(), dtype=FFT.float)
    c = zeros(FFT.complex_shape(), dtype=FFT.complex)
    a[:] = A[FFT.real_local_slice()]
    c = FFT.fftn(a, c)
    #print abs((c - B2[FFT.complex_local_slice()])/c.max()).max()
    assert all(abs((c - B2[FFT.complex_local_slice()])/c.max()) < rtol)
    #assert allclose(c, B2[FFT.complex_local_slice()], rtol, atol)
    a = FFT.ifftn(c, a)
    #print abs((a - A[FFT.real_local_slice()])/a.max()).max()

    assert all(abs((a - A[FFT.real_local_slice()])/a.max()) < rtol)
    #assert allclose(a, A[FFT.real_local_slice()], rtol, atol)
nonlinear_acoustics.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def is_stable(self):
        """Checks if simulation satisfies stability conditions. Does not account for instability
        due to high absorption or nonlinear effects. Includes a little headroom (1%).

        Returns:
            True if stable, False if not.
        """

        return np.all(self.material_vector('sound_velocity') <
                      0.99 * self.x.increment / self.t.increment)
acoustics.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def is_stable(self):
        """Checks if simulation satisfies stability conditions. Does not account for instability
        due to high absorption and includes a little headroom (1%).

        Returns:
            True if stable, False if not.
        """

        return np.all(self.material_vector('sound_velocity') <
                      0.99 * self.x.increment / self.t.increment)
acoustics.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def is_stable(self):
        """Checks if simulation satisfies stability conditions. Does not account for instability
        due to high absorption and includes a little headroom (1%).

        Returns:
            True if stable, False if not.
        """

        return np.all(self.material_vector('sound_velocity') <
                      0.99 * min(self.x.increment, self.y.increment) / self.t.increment)
acoustics.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def is_stable(self):
        """Checks if simulation satisfies stability conditions. Does not account for instability
        due to high absorption and includes a little headroom (1%).

        Returns:
            True if stable, False if not.
        """

        return np.all(self.material_vector('sound_velocity') <
                      0.99 * min(self.x.increment, self.y.increment) / self.t.increment)
acoustics.py 文件源码 项目:pyfds 作者: emtpb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def absorption_coef(self):
        """Returns a helper variable (called mu in publications by L. Claes) that sums up all
        losses into a single quantity."""

        if not self._absorption_coef:
            return (4/3 * self.shear_viscosity + self.bulk_viscosity + self.thermal_conductivity *
                    (self.isobaric_heat_cap - self.isochoric_heat_cap) /
                    (self.isobaric_heat_cap * self.isochoric_heat_cap))
        else:
            return self._absorption_coef


问题


面经


文章

微信
公众号

扫码关注公众号