python类float()的实例源码

dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def pearson_r(data_1, data_2):
    """
    Compute the Pearson correlation coefficient between two samples.

    Parameters
    ----------
    data_1 : array_like
        One-dimensional array of data.
    data_2 : array_like
        One-dimensional array of data.

    Returns
    -------
    output : float
        The Pearson correlation coefficient between `data_1`
        and `data_2`.

    Notes
    -----
    .. Only entries where both `data_1` and `data_2` are not NaN are
       used.
    .. If the variance of `data_1` or `data_2` is zero, return NaN.
    """
    x, y = _convert_two_data(data_1, data_2, inf_ok=False, min_len=2)
    return _pearson_r(x, y)
dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def swap_random(a, b):
    """
    Randomly swap entries in two arrays.

    Parameters
    ----------
    a : array_like
        1D array of entries to be swapped.
    b : array_like
        1D array of entries to be swapped. Must have the same lengths
        as `a`.

    Returns
    -------
    a_out : ndarray, dtype float
        Array with random entries swapped.
    b_out : ndarray, dtype float
        Array with random entries swapped.
    """
    a, b = _convert_two_data(a, b)

    return _swap_random(a, b)
dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def frac_yay_dems(dems, reps):
    """
    Compute fraction of yay votes from Democrats. This function is
    specific to exercises in Statistical Thinking in Python Part I.
    It is only included here for completeness.

    Parameters
    ----------
    dems : array_like, dtype bool
        Votes for democrats, True for yay vote, False for nay.
    reps : ignored
        Ignored; was only needed to specific application in permutation
        test in Statistical Thinking I.

    Returns
    -------
    output : float
        Fraction of Democrates who voted yay.
    """
    if dems.dtype != bool:
        raise RuntimeError('`dems` must be array of bools.')

    return np.sum(dems) / len(dems)
dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def heritability(parents, offspring):
    """
    Compute the heritability from parent and offspring samples.

    Parameters
    ----------
    parents : array_like
        Array of data for trait of parents.
    offspring : array_like
        Array of data for trait of offspring.

    Returns
    -------
    output : float
        Heritability of trait.
    """
    par, off = _convert_two_data(parents, offspring)
    covariance_matrix = np.cov(par, off)
    return covariance_matrix[0,1] / covariance_matrix[0,0]
generate_melody.py 文件源码 项目:SourceFilterContoursMelody 作者: juanjobosch 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def normalize(x, axis=None):
    """Normalize the values of an ndarray to sum to 1 along the given axis.
    Parameters
    ----------
    x : np.ndarray
        Input multidimensional array to normalize.
    axis : int, default=None
        Axis to normalize along, otherwise performed over the full array.
    Returns
    -------
    z : np.ndarray, shape=x.shape
        Normalized array.
    """
    if not axis is None:
        shape = list(x.shape)
        shape[axis] = 1
        scalar = x.astype(float).sum(axis=axis).reshape(shape)
        scalar[scalar == 0] = 1.0
    else:
        scalar = x.sum()
        scalar = 1 if scalar == 0 else scalar
    return x / scalar
bbox_regression.py 文件源码 项目:mx-rfcn 作者: giorking 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def bbox_overlaps(boxes, query_boxes):
    """
    determine overlaps between boxes and query_boxes
    :param boxes: n * 4 bounding boxes
    :param query_boxes: k * 4 bounding boxes
    :return: overlaps: n * k overlaps
    """
    n_ = boxes.shape[0]
    k_ = query_boxes.shape[0]
    overlaps = np.zeros((n_, k_), dtype=np.float)
    for k in range(k_):
        query_box_area = (query_boxes[k, 2] - query_boxes[k, 0] + 1) * (query_boxes[k, 3] - query_boxes[k, 1] + 1)
        for n in range(n_):
            iw = min(boxes[n, 2], query_boxes[k, 2]) - max(boxes[n, 0], query_boxes[k, 0]) + 1
            if iw > 0:
                ih = min(boxes[n, 3], query_boxes[k, 3]) - max(boxes[n, 1], query_boxes[k, 1]) + 1
                if ih > 0:
                    box_area = (boxes[n, 2] - boxes[n, 0] + 1) * (boxes[n, 3] - boxes[n, 1] + 1)
                    all_area = float(box_area + query_box_area - iw * ih)
                    overlaps[n, k] = iw * ih / all_area
    return overlaps
coco.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def _coco_results_one_category(self, boxes, cat_id):
        results = []
        for im_ind, index in enumerate(self.image_index):
            dets = boxes[im_ind].astype(np.float)
            if dets == []:
                continue
            scores = dets[:, -1]
            xs = dets[:, 0]
            ys = dets[:, 1]
            ws = dets[:, 2] - xs + 1
            hs = dets[:, 3] - ys + 1
            results.extend(
              [{'image_id' : index,
                'category_id' : cat_id,
                'bbox' : [xs[k], ys[k], ws[k], hs[k]],
                'score' : scores[k]} for k in xrange(dets.shape[0])])
        return results
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def SExtractorCat2fits(sextractorfiles,stringcols=[1],header=73,verbose=True):
    """
    Converting an ascii catalog with columns defined in header in the SExtractor format, i.e. one column
    name per row preceeded by a "#" and a column numner, and followed by a description (or any ascii file
    with the given setup) to a fits binary table

    --- INPUT ---
    sextractorfiles   List of ascii files to convert to fits
    stringcols        Columns to use a string format for (all other columns will be set to double float)
    header            Header containing the column names of the catalogs following the "SExtractor notation"
    verbose           Toggle verbosity

    --- EXAMPLE OF USE ---
    import glob
    import tdose_utilities as tu
    catalogs = glob.glob('/Volumes/DATABCKUP2/MUSE-Wide/catalogs_photometry/catalog_photometry_candels-cdfs-*.cat')
    tu.SExtractorCat2fits(catalogs,stringcols=[1],header=73,verbose=True)

    """
    for sexcat_ascii in sextractorfiles:
        asciiinfo = open(sexcat_ascii,'r')
        photcols = []
        for line in asciiinfo:
            if line.startswith('#'):
                colname = line.split()[2]
                photcols.append(colname)

        photfmt = ['D']*len(photcols)
        for stringcol in stringcols:
            photfmt[stringcol] = 'A60'

        sexcat_fits   = tu.ascii2fits(sexcat_ascii,asciinames=photcols,skip_header=header,fitsformat=photfmt,verbose=verbose)

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def galfit_getheadervalue(compnumber,key,headerinfo):
    """
    Return the paramters of a GALFIT model header

    --- INPUT ---
    compnumber      A string containing the component number to extract info for (number after "COMP_" in header)
    key             The key to extract (keyword after "COMPNUMBER_" in header)
    headerinfo      Header to extract info from.

    """
    hdrinfo = headerinfo[compnumber+'_'+key]

    if '*' in hdrinfo: # handling parameters fixed in GALFIT run
        hdrinfo = hdrinfo.replace('*','')

    if '+/-' in hdrinfo:
        value   = float(hdrinfo.split('+/-')[0])
        error   = float(hdrinfo.split('+/-')[1])
    else:
        value   = float(hdrinfo[1:-1])
        error   = None

    if (key == 'XC') or (key == 'YC'):
        xrange, yrange = headerinfo['FITSECT'][1:-1].split(',')
        xrange = np.asarray(xrange.split(':')).astype(float)
        yrange = np.asarray(yrange.split(':')).astype(float)
        if key == 'XC':
            value = value - xrange[0] + 1.0
        if key == 'YC':
            value = value - yrange[0] + 1.0

    return value, error
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def galfit_getcentralcoordinate(modelfile,coordorigin=1,verbose=True):
    """
    Return the central coordinates of a GALFIT model extracted using the reference image WCS and the FITSECT keyword

    --- INPUT ---
    modelfile       Path and name to GALFIT model fits file to retrieve central coordinates for
    coordorigin     Origin of coordinates in reference image to use when converting pixels to degrees (skycoord)
    verbose         Toggle verbosity

    --- EXAMPLE OF USE ---
    fileG   = '/Volumes/DATABCKUP2/TDOSEextractions/models_cutouts/model8685multicomponent/model_acs_814w_candels-cdfs-02_cut_v1.0_id8685_cutout7p0x7p0arcsec.fits' # Gauss components
    fileS   = '/Volumes/DATABCKUP2/TDOSEextractions/models_cutouts/model8685multicomponent/model_acs_814w_candels-cdfs-02_cut_v1.0_id9262_cutout2p0x2p0arcsec.fits' # Sersic components

    xpix, ypix, ra_model, dec_model = tu.galfit_getcentralcoordinate(fileG,coordorigin=1)

    """
    if verbose: print ' - Will extract central coordinates from '+modelfile
    refimg_hdr     = pyfits.open(modelfile)[1].header
    model_hdr      = pyfits.open(modelfile)[2].header
    imgwcs         = wcs.WCS(tu.strip_header(refimg_hdr.copy()))

    fit_region     = model_hdr['FITSECT']
    cutrange_low_x = int(float(fit_region.split(':')[0].split('[')[-1]))
    cutrange_low_y = int(float(fit_region.split(',')[-1].split(':')[0]))
    xsize          = model_hdr['NAXIS1']
    ysize          = model_hdr['NAXIS2']

    xpix           = cutrange_low_x + int(xsize/2.)
    ypix           = cutrange_low_y + int(ysize/2.)

    if verbose: print ' - Converting pixel position to coordinates using a pixel origin='+str(coordorigin)
    skycoord    = wcs.utils.pixel_to_skycoord(xpix,ypix,imgwcs,origin=coordorigin)

    ra_model    = skycoord.ra.value
    dec_model   = skycoord.dec.value

    return xpix,ypix,ra_model,dec_model
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
numerapi.py 文件源码 项目:numerai 作者: gansanay 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_user(self, username):
        leaderboard, status_code = self.get_leaderboard()
        if status_code!=200:
            return (None, None, None, None, status_code)

        for user in leaderboard[0]['leaderboard']:
            if user['username']==username:
                return (user['username'], np.float(user['logloss']['public']),  user['rank']['public'],  user['earned'], status_code)
        return (None, None, None, None, status_code)
utils.py 文件源码 项目:cnn-graph-classification 作者: giannisnik 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def load_data(ds_name, use_node_labels):
    node2graph = {}
    Gs = []

    with open("../datasets/%s/%s_graph_indicator.txt"%(ds_name,ds_name), "r") as f:
        c = 1
        for line in f:
            node2graph[c] = int(line[:-1])
            if not node2graph[c] == len(Gs):
                Gs.append(nx.Graph())
            Gs[-1].add_node(c)
            c += 1

    with open("../datasets/%s/%s_A.txt"%(ds_name,ds_name), "r") as f:
        for line in f:
            edge = line[:-1].split(",")
            edge[1] = edge[1].replace(" ", "")
            Gs[node2graph[int(edge[0])]-1].add_edge(int(edge[0]), int(edge[1]))

    if use_node_labels:
        with open("../datasets/%s/%s_node_labels.txt"%(ds_name,ds_name), "r") as f:
            c = 1
            for line in f:
                node_label = int(line[:-1])
                Gs[node2graph[c]-1].node[c]['label'] = node_label
                c += 1

    labels = []
    with open("../datasets/%s/%s_graph_labels.txt"%(ds_name,ds_name), "r") as f:
        for line in f:
            labels.append(int(line[:-1]))

    labels  = np.array(labels, dtype = np.float)
    return Gs, labels
mpibase.py 文件源码 项目:mpiFFT4py 作者: spectralDNS 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def empty(N, dtype=np.float, bytes=16):
        return pyfftw.empty_aligned(N, dtype=dtype, n=bytes)
mpibase.py 文件源码 项目:mpiFFT4py 作者: spectralDNS 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def zeros(N, dtype=np.float, bytes=16):
        return pyfftw.zeros_aligned(N, dtype=dtype, n=bytes)
mpibase.py 文件源码 项目:mpiFFT4py 作者: spectralDNS 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def empty(N, dtype=np.float, bytes=None):
        return Empty(N, dtype=dtype)
mpibase.py 文件源码 项目:mpiFFT4py 作者: spectralDNS 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def zeros(N, dtype=np.float, bytes=None):
        return Zeros(N, dtype=dtype)
uwb_tracker_node.py 文件源码 项目:uwb_tracker_ros 作者: eth-ait 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _read_configuration(self):
        """Initialize configuration from ROS parameters.
        """
        self.uwb_multi_range_topic = rospy.get_param('~multi_range_raw_topic', '/uwb/multi_range_with_offsets')
        self.uwb_tracker_topic = rospy.get_param('~tracker_topic', '/uwb/tracker')
        self.tracker_frame = rospy.get_param('~tracker_frame', 'uwb')
        self.target_frame = rospy.get_param('~target_frame', 'target')

        # Get parameters for covariance matrices
        self.initial_position_covariance = rospy.get_param('~initial_position_covariance', 10)
        self.process_covariance_position = rospy.get_param('~process_covariance_position', 0)
        self.process_covariance_velocity = rospy.get_param('~process_covariance_velocity', 1)
        self.measurement_covariance = rospy.get_param('~measurement_covariance', 0.1 ** 2)

        # Get parameters for filter update and initial gauss-newton estimation
        self.ignore_z_position = rospy.get_param('~ignore_z_position', True)
        # The default value of 7.779 represents the 0.9 quantile of a Chi-Square distribution
        # with 4 degrees of freedom (4 UWB measurements).
        self.outlier_threshold_quantile = rospy.get_param('~outlier_threshold_quantile', 0.1)
        self.ikf_iterations = rospy.get_param('~ikf_iterations', 2)
        self.initial_guess_position = np.empty((3, 1), dtype=np.float)
        self.initial_guess_position[0] = rospy.get_param('~initial_guess_position_x', 0)
        self.initial_guess_position[1] = rospy.get_param('~initial_guess_position_y', 0)
        self.initial_guess_position[2] = rospy.get_param('~initial_guess_position_z', 0)
        self.initial_guess_iterations = rospy.get_param('~initial_guess_iterations', 200)
        self.initial_guess_tolerance = rospy.get_param('~initial_guess_tolerance', 1e-5)
        self.initial_guess_residuals_threshold = rospy.get_param('~initial_guess_residuals_threshold', 0.1)
        self.ikf_max_outlier_count = rospy.get_param('~ikf_max_outlier_count', 200)
uwb_tracker_node.py 文件源码 项目:uwb_tracker_ros 作者: eth-ait 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def update_filter(self, timestep, estimate, ranges):
        """Update position filter.

        Args:
             timestep (float): Time elapsed since last update.
             estimate (StateEstimate): Position estimate to update.
             ranges (list of floats): Range measurements.

        Returns:
            new_estimate (StateEstimate): Updated position estimate.
            outlier_flag (bool): Flag indicating whether the measurement was rejected as an outlier.
        """
        num_of_units = len(ranges)
        x = estimate.state
        P = estimate.covariance
        # Compute process matrix and covariance matrices
        F, Q, R = self._compute_process_and_covariance_matrices(timestep)
        # rospy.logdebug('F: {}'.format(F))
        # rospy.logdebug('Q: {}'.format(Q))
        # rospy.logdebug('R: {}'.format(R))
        # Prediction
        x = np.dot(F, x)
        P = np.dot(F, np.dot(P, F.T)) + Q
        # Update
        n = np.copy(x)
        H = np.zeros((num_of_units, x.size))
        z = np.zeros((num_of_units, 1))
        h = np.zeros((num_of_units, 1))
        for i in xrange(self.ikf_iterations):
            n, K, outlier_flag = self._ikf_iteration(x, n, ranges, h, H, z, estimate, R)
        if outlier_flag:
            new_estimate = estimate
        else:
            new_state = n
            new_covariance = np.dot((np.eye(6) - np.dot(K, H)), P)
            new_estimate = UWBTracker.StateEstimate(new_state, new_covariance)
        return new_estimate, outlier_flag
rasterfairy.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def arrangement_sort(x, y):
    return int(100000000*(abs(float(min(x['width'],x['height'])) / float(max(x['width'],x['height']))) - abs(float(min(y['width'],y['height'])) / float(max(y['width'],y['height'])))))
rasterfairy.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def proportion_sort(x, y):
    return int(100000000*(abs(float(min(x[0],x[1])) / float(max(x[0],x[1]))) - abs(float(min(y[0],y[1])) / float(max(y[0],y[1])))))


问题


面经


文章

微信
公众号

扫码关注公众号