python类transpose()的实例源码

MeshIO.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def writeModelUBC(mesh, fileName, model):
        """Writes a model associated with a TensorMesh
        to a UBC-GIF format model file.

        :param string fileName: File to write to
        :param numpy.ndarray model: The model
        """

        # Reshape model to a matrix
        modelMat = mesh.r(model, 'CC', 'CC', 'M')
        # Transpose the axes
        modelMatT = modelMat.transpose((2, 0, 1))
        # Flip z to positive down
        modelMatTR = utils.mkvc(modelMatT[::-1, :, :])

        np.savetxt(fileName, modelMatTR.ravel())
test_multiarray.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_inner_product_with_various_contiguities(self):
        # github issue 6532
        for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
            # check an inner product involving a matrix transpose
            A = np.array([[1, 2], [3, 4]], dtype=dt)
            B = np.array([[1, 3], [2, 4]], dtype=dt)
            C = np.array([1, 1], dtype=dt)
            desired = np.array([4, 6], dtype=dt)
            assert_equal(np.inner(A.T, C), desired)
            assert_equal(np.inner(C, A.T), desired)
            assert_equal(np.inner(B, C), desired)
            assert_equal(np.inner(C, B), desired)
            # check a matrix product
            desired = np.array([[7, 10], [15, 22]], dtype=dt)
            assert_equal(np.inner(A, B), desired)
            # check the syrk vs. gemm paths
            desired = np.array([[5, 11], [11, 25]], dtype=dt)
            assert_equal(np.inner(A, A), desired)
            assert_equal(np.inner(A, A.copy()), desired)
            # check an inner product involving an aliased and reversed view
            a = np.arange(5).astype(dt)
            b = a[::-1]
            desired = np.array(10, dtype=dt).item()
            assert_equal(np.inner(b, a), desired)
test_core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 61 收藏 0 点赞 0 评论 0
def test_TakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
                     inner(x, y))
        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
                     outer(x, y))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
test_core.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_generic_methods(self):
        # Tests some MaskedArray methods.
        a = array([1, 3, 2])
        assert_equal(a.any(), a._data.any())
        assert_equal(a.all(), a._data.all())
        assert_equal(a.argmax(), a._data.argmax())
        assert_equal(a.argmin(), a._data.argmin())
        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
        assert_equal(a.conj(), a._data.conj())
        assert_equal(a.conjugate(), a._data.conjugate())

        m = array([[1, 2], [3, 4]])
        assert_equal(m.diagonal(), m._data.diagonal())
        assert_equal(a.sum(), a._data.sum())
        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
        assert_equal(m.transpose(), m._data.transpose())
test_old_ma.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_testTakeTransposeInnerOuter(self):
        # Test of take, transpose, inner, outer products
        x = arange(24)
        y = np.arange(24)
        x[5:6] = masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
        assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
        assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
                   inner(x, y)))
        assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
                   outer(x, y)))
        y = array(['abc', 1, 'def', 2, 3], object)
        y[2] = masked
        t = take(y, [0, 3, 4])
        assert_(t[0] == 'abc')
        assert_(t[1] == 2)
        assert_(t[2] == 3)
test_old_ma.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_testArrayMethods(self):
        a = array([1, 3, 2])
        self.assertTrue(eq(a.any(), a._data.any()))
        self.assertTrue(eq(a.all(), a._data.all()))
        self.assertTrue(eq(a.argmax(), a._data.argmax()))
        self.assertTrue(eq(a.argmin(), a._data.argmin()))
        self.assertTrue(eq(a.choose(0, 1, 2, 3, 4),
                           a._data.choose(0, 1, 2, 3, 4)))
        self.assertTrue(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
        self.assertTrue(eq(a.conj(), a._data.conj()))
        self.assertTrue(eq(a.conjugate(), a._data.conjugate()))
        m = array([[1, 2], [3, 4]])
        self.assertTrue(eq(m.diagonal(), m._data.diagonal()))
        self.assertTrue(eq(a.sum(), a._data.sum()))
        self.assertTrue(eq(a.take([1, 2]), a._data.take([1, 2])))
        self.assertTrue(eq(m.transpose(), m._data.transpose()))
timer_comparison.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_4(self):
        """
        Test of take, transpose, inner, outer products.

        """
        x = self.arange(24)
        y = np.arange(24)
        x[5:6] = self.masked
        x = x.reshape(2, 3, 4)
        y = y.reshape(2, 3, 4)
        assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
        assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
        assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
                            self.inner(x, y))
        assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
                            self.outer(x, y))
        y = self.array(['abc', 1, 'def', 2, 3], object)
        y[2] = self.masked
        t = self.take(y, [0, 3, 4])
        assert t[0] == 'abc'
        assert t[1] == 2
        assert t[2] == 3
test_defmatrix.py 文件源码 项目:radar 作者: amoose136 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_basic(self):
        import numpy.linalg as linalg

        A = np.array([[1., 2.],
                      [3., 4.]])
        mA = matrix(A)
        assert_(np.allclose(linalg.inv(A), mA.I))
        assert_(np.all(np.array(np.transpose(A) == mA.T)))
        assert_(np.all(np.array(np.transpose(A) == mA.H)))
        assert_(np.all(A == mA.A))

        B = A + 2j*A
        mB = matrix(B)
        assert_(np.allclose(linalg.inv(B), mB.I))
        assert_(np.all(np.array(np.transpose(B) == mB.T)))
        assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
dataloader.py 文件源码 项目:MIL.pytorch 作者: gujiuxiang 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def preprocess_vgg19_mil(Image):
    if len(Image.shape) == 2:
        Image = Image[:, :, np.newaxis]
        Image = np.concatenate((Image, Image, Image), axis=2)

    mean = np.array([[[103.939, 116.779, 123.68]]]);
    base_image_size = 565;
    Image = cv2.resize(np.transpose(Image, axes=(1, 2, 0)), (base_image_size, base_image_size), interpolation=cv2.INTER_CUBIC)
    Image_orig = Image.astype(np.float32, copy=True)
    Image_orig -= mean
    im = Image_orig
    #im, gr, grr = upsample_image(Image_orig, base_image_size)
    # im = cv2.resize(Image_orig, (base_image_size, base_image_size), interpolation=cv2.INTER_CUBIC)
    im = np.transpose(im, axes=(2, 0, 1))
    im = im[np.newaxis, :, :, :]
    return im
test.py 文件源码 项目:MIL.pytorch 作者: gujiuxiang 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_img(im, net, base_image_size, means):
    """
    Calls Caffe to get output for this image
    """
    batch_size = 1
    # Resize image
    im_orig = im.astype(np.float32, copy=True)
    im_orig -= means

    im, gr, grr = upsample_image(im_orig, base_image_size)
    im = np.transpose(im, axes=(2, 0, 1))
    im = im[np.newaxis, :, :, :]

    # Pass into model
    mil_prob = net(Variable(torch.from_numpy(im), requires_grad=False).cuda())
    return mil_prob
tdose_utilities.py 文件源码 项目:TDOSE 作者: kasperschmidt 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_2D_cov_matrix(sigmax,sigmay,angle,verbose=True):
    """
    Build a covariance matrix for a 2D multivariate Gaussian

    --- INPUT ---
    sigmax          Standard deviation of the x-compoent of the multivariate Gaussian
    sigmay          Standard deviation of the y-compoent of the multivariate Gaussian
    angle           Angle to rotate matrix by in degrees (clockwise) to populate covariance cross terms
    verbose         Toggle verbosity
    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    covmatrix = tu.build_2D_cov_matrix(3,1,35)

    """
    if verbose: print ' - Build 2D covariance matrix with varinaces (x,y)=('+str(sigmax)+','+str(sigmay)+\
                      ') and then rotated '+str(angle)+' degrees'
    cov_orig      = np.zeros([2,2])
    cov_orig[0,0] = sigmay**2.0
    cov_orig[1,1] = sigmax**2.0

    angle_rad     = (180.0-angle) * np.pi/180.0 # The (90-angle) makes sure the same convention as DS9 is used
    c, s          = np.cos(angle_rad), np.sin(angle_rad)
    rotmatrix     = np.matrix([[c, -s], [s, c]])

    cov_rot       = np.dot(np.dot(rotmatrix,cov_orig),np.transpose(rotmatrix))  # performing rot * cov * rot^T

    return cov_rot
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_face_mask(img, img_l):
    img = np.zeros(img.shape[:2], dtype = np.float64)

    for idx in OVERLAY_POINTS_IDX:
        cv2.fillConvexPoly(img, cv2.convexHull(img_l[idx]), color = 1)

    img = np.array([img, img, img]).transpose((1, 2, 0))
    img = (cv2.GaussianBlur(img, (BLUR_AMOUNT, BLUR_AMOUNT), 0) > 0) * 1.0
    img = cv2.GaussianBlur(img, (BLUR_AMOUNT, BLUR_AMOUNT), 0)

    return img
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_tm_opp(pts1, pts2):
    # Transformation matrix - ( Translation + Scaling + Rotation )
    # using Procuster analysis
    pts1 = np.float64(pts1)
    pts2 = np.float64(pts2)

    m1 = np.mean(pts1, axis = 0)
    m2 = np.mean(pts2, axis = 0)

    # Removing translation
    pts1 -= m1
    pts2 -= m2

    std1 = np.std(pts1)
    std2 = np.std(pts2)
    std_r = std2/std1

    # Removing scaling
    pts1 /= std1
    pts2 /= std2

    U, S, V = np.linalg.svd(np.transpose(pts1) * pts2)

    # Finding the rotation matrix
    R = np.transpose(U * V)

    return np.vstack([np.hstack((std_r * R,
        np.transpose(m2) - std_r * R * np.transpose(m1))), np.matrix([0.0, 0.0, 1.0])])
pay_attention.py 文件源码 项目:almond-nnparser 作者: Stanford-Mobisocial-IoT-Lab 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def show_heatmap(x, y, attention):
    #print attention[:len(y),:len(x)]
    #print attention[:len(y),:len(x)].shape
    #data = np.transpose(attention[:len(y),:len(x)])
    data = attention[:len(y),:len(x)]
    x, y = y, x

    #ax = plt.axes(aspect=0.4)
    ax = plt.axes()
    heatmap = plt.pcolor(data, cmap=plt.cm.Blues)

    xticks = np.arange(len(y)) + 0.5
    xlabels = y
    yticks = np.arange(len(x)) + 0.5
    ylabels = x
    plt.xticks(xticks, xlabels, rotation='vertical')
    ax.set_yticks(yticks)
    ax.set_yticklabels(ylabels)

    # make it look less like a scatter plot and more like a colored table
    ax.tick_params(axis='both', length=0)
    ax.invert_yaxis()
    ax.xaxis.tick_top()

    plt.colorbar(heatmap)

    plt.show()
    #plt.savefig('./attention-out.pdf')
images2gif.py 文件源码 项目:RasterFairy 作者: Quasimondo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def alterneigh(self, alpha, rad, i, b, g, r):
        if i-rad >= self.SPECIALS-1:
            lo = i-rad
            start = 0
        else:
            lo = self.SPECIALS-1
            start = (self.SPECIALS-1 - (i-rad))

        if i+rad <= self.NETSIZE:
            hi = i+rad
            end = rad*2-1
        else:
            hi = self.NETSIZE
            end = (self.NETSIZE - (i+rad))

        a = self.geta(alpha, rad)[start:end]

        p = self.network[lo+1:hi]
        p -= np.transpose(np.transpose(p - np.array([b, g, r])) * a)

    #def contest(self, b, g, r):
    #    """ Search for biased BGR values
    #            Finds closest neuron (min dist) and updates self.freq
    #            finds best neuron (min dist-self.bias) and returns position
    #            for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative
    #            self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])"""
    #
    #    i, j = self.SPECIALS, self.NETSIZE
    #    dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1)
    #    bestpos = i + np.argmin(dists)
    #    biasdists = dists - self.bias[i:j]
    #    bestbiaspos = i + np.argmin(biasdists)
    #    self.freq[i:j] -= self.BETA * self.freq[i:j]
    #    self.bias[i:j] += self.BETAGAMMA * self.freq[i:j]
    #    self.freq[bestpos] += self.BETA
    #    self.bias[bestpos] -= self.BETAGAMMA
    #    return bestbiaspos
camvid_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = img.astype(float) / 255.0
        # NHWC -> NCHW
        img = img.transpose(2, 0, 1)

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
cityscapes_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        """transform

        :param img:
        :param lbl:
        """
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        classes = np.unique(lbl)
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)

        if not np.all(classes == np.unique(lbl)):
            print("WARN: resizing labels yielded fewer classes")

        if not np.all(np.unique(lbl) < self.n_classes):
            raise ValueError("Segmentation map contained invalid class values")

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()

        return img, lbl
voc_squeezeDetplus_config.py 文件源码 项目:squeezeDet-hand 作者: fyhtea 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def set_anchors(mc):
  H, W, B = 13, 18, 9
  anchor_shapes = np.reshape(
      [np.array(
          [[  36.,  37.], [ 366., 174.], [ 115.,  59.],
           [ 162.,  87.], [  38.,  90.], [ 258., 173.],
           [ 224., 108.], [  78., 170.], [  72.,  43.]])] * H * W,
      (H, W, B, 2)
  )
  center_x = np.reshape(
      np.transpose(
          np.reshape(
              np.array([np.arange(1, W+1)*float(mc.IMAGE_WIDTH)/(W+1)]*H*B),
              (B, H, W)
          ),
          (1, 2, 0)
      ),
      (H, W, B, 1)
  )
  center_y = np.reshape(
      np.transpose(
          np.reshape(
              np.array([np.arange(1, H+1)*float(mc.IMAGE_HEIGHT)/(H+1)]*W*B),
              (B, W, H)
          ),
          (2, 1, 0)
      ),
      (H, W, B, 1)
  )
  anchors = np.reshape(
      np.concatenate((center_x, center_y, anchor_shapes), axis=3),
      (-1, 4)
  )

  return anchors
voc_squeezeDet_config.py 文件源码 项目:squeezeDet-hand 作者: fyhtea 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def set_anchors(mc):
  H, W, B = 14, 19, 9
  anchor_shapes = np.reshape(
      [np.array(
          [[  36.,  37.], [ 366., 174.], [ 115.,  59.],
           [ 162.,  87.], [  38.,  90.], [ 258., 173.],
           [ 224., 108.], [  78., 170.], [  72.,  43.]])] * H * W,
      (H, W, B, 2)
  )
  center_x = np.reshape(
      np.transpose(
          np.reshape(
              np.array([np.arange(1, W+1)*float(mc.IMAGE_WIDTH)/(W+1)]*H*B),
              (B, H, W)
          ),
          (1, 2, 0)
      ),
      (H, W, B, 1)
  )
  center_y = np.reshape(
      np.transpose(
          np.reshape(
              np.array([np.arange(1, H+1)*float(mc.IMAGE_HEIGHT)/(H+1)]*W*B),
              (B, W, H)
          ),
          (2, 1, 0)
      ),
      (H, W, B, 1)
  )
  anchors = np.reshape(
      np.concatenate((center_x, center_y, anchor_shapes), axis=3),
      (-1, 4)
  )

  return anchors
mmd_vae.py 文件源码 项目:MMD-Variational-Autoencoder 作者: ShengjiaZhao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def convert_to_display(samples):
    cnt, height, width = int(math.floor(math.sqrt(samples.shape[0]))), samples.shape[1], samples.shape[2]
    samples = np.transpose(samples, axes=[1, 0, 2, 3])
    samples = np.reshape(samples, [height, cnt, cnt, width])
    samples = np.transpose(samples, axes=[1, 0, 2, 3])
    samples = np.reshape(samples, [height*cnt, width*cnt])
    return samples


问题


面经


文章

微信
公众号

扫码关注公众号