python类transpose()的实例源码

image_channel.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def preprocess(image):
    """Takes an image and apply preprocess"""
    # ????????????
    image = cv2.resize(image, (data_shape, data_shape))
    # ?? BGR ? RGB
    image = image[:, :, (2, 1, 0)]
    # ?mean?????float
    image = image.astype(np.float32)
    # ? mean
    image -= np.array([123, 117, 104])
    # ??? [batch-channel-height-width]
    image = np.transpose(image, (2, 0, 1))
    image = image[np.newaxis, :]
    # ?? ndarray
    image = nd.array(image)
    return image
NN.py 文件源码 项目:MachineLearningProjects 作者: geallen 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def backPropagate(Z1, Z2, y, W2, b2):
    ## YOUR CODE HERE ##
    E2 = 0
    E1 = 0
    Eb1 = 0

    # E2 is the error in output layer. To find it we should exract estimated value from actual output.
    # We should find 5 error because there are 5 node in output layer.
    E2 = Z2 - y

    ## E1 is the error in the hidden layer. To find it we should use the error that we found in output layer and the weights between
    ## output and hidden layer
    ## We should find 30 error because there are 30 node in hidden layer.
    E1 = np.dot(W2, np.transpose(E2))

    ## Eb1 is the error bias for hidden layer. To find it we should use the error that we found in output layer and the weights between
    ## output and bias layer
    ## We should find 1 error because there are 1 bias node in hidden layer.
    Eb1 = np.dot(b2, np.transpose(E2))
    ####################
    return E2, E1, Eb1

# calculate the gradients for weights between units and the bias weights
pascal_voc_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl[lbl==255] = 0
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
ade20k_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl = self.encode_segmap(lbl)
        classes = np.unique(lbl)
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)
        assert(np.all(classes == np.unique(lbl)))

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
NN.py 文件源码 项目:MachineLearningProjects 作者: geallen 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def calcGrads(X, Z1, Z2, E1, E2, Eb1):
    ## YOUR CODE HERE ##
    d_W1 = 0
    d_b1 = 0
    d_W2 = 0
    d_b2 = 0


    ## In here we should the derivatives for gradients. To find derivative, we should multiply.

    # d_w2 is the derivative for weights between hidden layer and the output layer.
    d_W2 = np.dot(np.transpose(E2), Z1)
    # d_w1 is the derivative for weights between hidden layer and the input layer.
    d_W1 = np.dot(E1, X)
    # d_b2 is the derivative for weights between hidden layer bias and the output layer.
    d_b2 = np.dot(np.transpose(E2), Eb1)
    # d_b1 is the derivative for weights between hidden layer bias and the input layer.
    d_b1 = np.dot(np.transpose(E1), 1)


    ####################
    return d_W1, d_W2, d_b1, d_b2

# update the weights between units and the bias weights using a learning rate of alpha
NN.py 文件源码 项目:MachineLearningProjects 作者: geallen 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def updateWeights(W1, b1, W2, b2, alpha, d_W1, d_W2, d_b1, d_b2):
    ## YOUR CODE HERE ##
    # W1 = 0
    # b1 = 0
    # W2 = 0
    # b2 = 0

    ## Here we should update weights with usin the result that we found in calcGrads function

    ## W1 is weights between input and the hidden layer
    W1 = W1 - alpha * (np.transpose(d_W1)) # 400*30
    ## W2 is weights between output and the hidden layer
    W2 = W2 - alpha * (np.transpose(d_W2)) # 30*5
    ## b1 is weights between input bias and the hidden layer
    b1 = b1 - alpha * d_b1
    ## b2 is weights between hidden layer bias and the output layer
    b2 = b2 - alpha * (np.transpose(d_b2))
    ####################
    return W1, b1, W2, b2
cpm_utils.py 文件源码 项目:convolutional-pose-machines-tensorflow 作者: timctho 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def make_heatmaps_from_joints(input_size, heatmap_size, gaussian_variance, batch_joints):
    # Generate ground-truth heatmaps from ground-truth 2d joints
    scale_factor = input_size // heatmap_size
    batch_gt_heatmap_np = []
    for i in range(batch_joints.shape[0]):
        gt_heatmap_np = []
        invert_heatmap_np = np.ones(shape=(heatmap_size, heatmap_size))
        for j in range(batch_joints.shape[1]):
            cur_joint_heatmap = make_gaussian(heatmap_size,
                                              gaussian_variance,
                                              center=(batch_joints[i][j] // scale_factor))
            gt_heatmap_np.append(cur_joint_heatmap)
            invert_heatmap_np -= cur_joint_heatmap
        gt_heatmap_np.append(invert_heatmap_np)
        batch_gt_heatmap_np.append(gt_heatmap_np)
    batch_gt_heatmap_np = np.asarray(batch_gt_heatmap_np)
    batch_gt_heatmap_np = np.transpose(batch_gt_heatmap_np, (0, 2, 3, 1))

    return batch_gt_heatmap_np
af_h5_to_nparray.py 文件源码 项目:evaluation_tools 作者: JSALT-Rosetta 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def af_h5_to_np(input_path, outpath):

    files = tables.open_file(input_path, mode = 'r+')
    speaker_nodes = files.root._f_list_nodes()

    for spk in speaker_nodes:
        file_nodes = spk._f_list_nodes()
        for fls in file_nodes:
            file_name = fls._v_name
            af_nodes = fls._f_list_nodes()
            af_list = []
            for fts in af_nodes:
                features = fts[:]
                mean = numpy.mean(features,1)
                normalised_feats = list(numpy.transpose(features)/mean)
                af_list += normalised_feats
            numpy.save(outpath + file_name, numpy.array(af_list))
linear_time.py 文件源码 项目:kernel_goodness_of_fit 作者: karlnapf 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def mahalanobis_distance(difference, num_random_features):
    num_samples, _ = np.shape(difference)
    sigma = np.cov(np.transpose(difference))

    mu = np.mean(difference, 0)

    if num_random_features == 1:
        stat = float(num_samples * mu ** 2) / float(sigma)
    else:
        try:
            linalg.inv(sigma)
        except LinAlgError:
            print('covariance matrix is singular. Pvalue returned is 1.1')
            warnings.warn('covariance matrix is singular. Pvalue returned is 1.1')
            return 0
        stat = num_samples * mu.dot(linalg.solve(sigma, np.transpose(mu)))

    return chi2.sf(stat, num_random_features)
hp.py 文件源码 项目:seqhawkes 作者: mlukasik 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def sumIntensitiesMeme(
        self,
        t,
        m,
        node_vec,
        etimes,
        filterlatertimes=True,
        ):
        if filterlatertimes:
            I = self.mu * self.gamma[m] \
                + np.dot(np.transpose(self.alpha[node_vec[etimes
                         < t].astype(int), :][:, range(self.D)]),
                         self.kernel_evaluate(t, etimes[etimes < t],
                         self.omega))
        else:
            I = self.mu * self.gamma[m] \
                + np.dot(np.transpose(self.alpha[node_vec.astype(int), :
                         ][:, range(self.D)]), self.kernel_evaluate(t,
                         etimes, self.omega))
        sumI = np.sum(I)
        return (I, sumI)
hp.py 文件源码 项目:seqhawkes 作者: mlukasik 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def sumIntensitiesAll(
        self,
        t,
        node_vec,
        etimes,
        filterlatertimes=False,
        ):
        if filterlatertimes:
            I = self.mu * np.sum(self.gamma) \
                + np.dot(np.transpose(self.alpha[node_vec[etimes
                         < t].astype(int), :][:, range(self.D)]),
                         self.kernel_evaluate(t, etimes[etimes < t],
                         self.omega))
        else:
            I = self.mu * np.sum(self.gamma) \
                + np.dot(np.transpose(self.alpha[node_vec.astype(int), :
                         ][:, range(self.D)]), self.kernel_evaluate(t,
                         etimes, self.omega))
        sumI = np.sum(I)
        return (I, sumI)
hp.py 文件源码 项目:seqhawkes 作者: mlukasik 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _intensityUserMeme(
        self,
        t,
        d,
        m,
        filterlatertimes=False,
        ):
        etimes = self.etimes[self.eventmemes == m]
        node_vec = self.node_vec[self.eventmemes == m]
        if filterlatertimes:
            return self.mu[d] * self.gamma[m] \
                + np.dot(np.transpose(self.alpha[node_vec[etimes
                         < t].astype(int), :][:, d]),
                         self.kernel_evaluate(t, etimes[etimes < t],
                         self.omega))
        else:
            return self.mu[d] * self.gamma[m] \
                + np.dot(np.transpose(self.alpha[node_vec.astype(int), :
                         ][:, d]), self.kernel_evaluate(t, etimes,
                         self.omega))
config_dataset_HAR_6_classes.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def load_X(X_signals_paths):
    """
    Given attribute (train or test) of feature, read all 9 features into an
    np ndarray of shape [sample_sequence_idx, time_step, feature_num]
        argument:   X_signals_paths str attribute of feature: 'train' or 'test'
        return:     np ndarray, tensor of features
    """
    X_signals = []

    for signal_type_path in X_signals_paths:
        file = open(signal_type_path, 'rb')
        # Read dataset from disk, dealing with text files' syntax
        X_signals.append(
            [np.array(serie, dtype=np.float32) for serie in [
                row.replace('  ', ' ').strip().split(' ') for row in file
            ]]
        )
        file.close()

    return np.transpose(np.array(X_signals), (1, 2, 0))
dataset.py 文件源码 项目:speed 作者: keon 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def get_batcher(self, shuffle=True, augment=True):
        """ produces batch generator """
        w, h = self.resize

        if shuffle: np.random.shuffle(self.data)
        data = iter(self.data)
        while True:
            x = np.zeros((self.batch_size, self.timesteps, h, w, 3))
            y = np.zeros((self.batch_size, 1))
            for b in range(self.batch_size):
                images, label = next(data)
                for t, img_name in enumerate(images):
                    image_path = self.folder + 'images/' + img_name
                    img = cv2.imread(image_path)
                    img = img[190:350, 100:520] # crop
                    if augment:
                        img = aug.augment_image(img) # augmentation
                    img = cv2.resize(img.copy(), (w, h))
                    x[b, t] = img
                y[b] = label
            x = np.transpose(x, [0, 4, 1, 2, 3])
            yield x, y
factory.py 文件源码 项目:mpnum 作者: dseuss 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _random_op(sites, ldim, hermitian=False, normalized=False, randstate=None,
               dtype=np.complex_):
    """Returns a random operator  of shape (ldim,ldim) * sites with local
    dimension `ldim` living on `sites` sites in global form.

    :param sites: Number of local sites
    :param ldim: Local ldimension
    :param hermitian: Return only the hermitian part (default False)
    :param normalized: Normalize to Frobenius norm=1 (default False)
    :param randstate: numpy.random.RandomState instance or None
    :returns: numpy.ndarray of shape (ldim,ldim) * sites

    >>> A = _random_op(3, 2); A.shape
    (2, 2, 2, 2, 2, 2)
    """
    op = _randfuncs[dtype]((ldim**sites,) * 2, randstate=randstate)
    if hermitian:
        op += np.transpose(op).conj()
    if normalized:
        op /= np.linalg.norm(op)
    return op.reshape((ldim,) * 2 * sites)
mparray.py 文件源码 项目:mpnum 作者: dseuss 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def transpose(self, axes=None):
        """Transpose (=reverse order of) physical legs on each site

        :param axes: New order of the physical axes. If ``None`` is passed,
            we reverse the order of the legs on each site. (default ``None``)

        >>> from .factory import random_mpa
        >>> mpa = random_mpa(2, (2, 3, 4), 2)
        >>> mpa.shape
        ((2, 3, 4), (2, 3, 4))
        >>> mpa.transpose((2, 0, 1)).shape
        ((4, 2, 3), (4, 2, 3))

        """
        ltens = LocalTensors((_local_transpose(tens, axes) for tens in self.lt),
                             cform=self.canonical_form)
        return type(self)(ltens)
point_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        d1len = len(self.data1[t1])
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[self.data1[t1]]
            t2_rep = self.embed[self.data2[t2]]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
list_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 60 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
pair_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            curr_pair_feats = list(self.hist_feats[(t1, t2)])
            caled_hist = np.reshape(curr_pair_feats, (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
list_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
pair_generator.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cal_hist(self, t1, t2, data1_maxlen, hist_size):
        mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32)
        t1_cont = list(self.data1[t1])
        t2_cont = list(self.data2[t2])
        d1len = len(t1_cont)
        if self.use_hist_feats:
            assert (t1, t2) in self.hist_feats
            curr_pair_feats = list(self.hist_feats[(t1, t2)])
            caled_hist = np.reshape(curr_pair_feats, (d1len, hist_size))
            if d1len < data1_maxlen:
                mhist[:d1len, :] = caled_hist[:, :]
            else:
                mhist[:, :] = caled_hist[:data1_maxlen, :]
        else:
            t1_rep = self.embed[t1_cont]
            t2_rep = self.embed[t2_cont]
            mm = t1_rep.dot(np.transpose(t2_rep))
            for (i,j), v in np.ndenumerate(mm):
                if i >= data1_maxlen:
                    break
                vid = int((v + 1.) / 2. * ( hist_size - 1.))
                mhist[i][vid] += 1.
            mhist += 1.
            mhist = np.log10(mhist)
        return mhist
measure_map.py 文件源码 项目:AerialCrackDetection_Keras 作者: TTMRonald 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def format_img(img, C):
    img_min_side = float(C.im_size)
    (height,width,_) = img.shape

    if width <= height:
        f = img_min_side/width
        new_height = int(f * height)
        new_width = int(img_min_side)
    else:
        f = img_min_side/height
        new_width = int(f * width)
        new_height = int(img_min_side)
    fx = width/float(new_width)
    fy = height/float(new_height)
    img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
    img = img[:, :, (2, 1, 0)]
    img = img.astype(np.float32)
    img[:, :, 0] -= C.img_channel_mean[0]
    img[:, :, 1] -= C.img_channel_mean[1]
    img[:, :, 2] -= C.img_channel_mean[2]
    img /= C.img_scaling_factor
    img = np.transpose(img, (2, 0, 1))
    img = np.expand_dims(img, axis=0)
    return img, fx, fy
nn-lm-batch.py 文件源码 项目:nn4nlp-code 作者: neubig 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def calc_score_of_histories(words, dropout=0.0):
  # This will change from a list of histories, to a list of words in each history position
  words = np.transpose(words)
  # Lookup the embeddings and concatenate them
  emb = dy.concatenate([dy.lookup_batch(W_emb, x) for x in words])
  # Create the hidden layer
  W_h = dy.parameter(W_h_p)
  b_h = dy.parameter(b_h_p)
  h = dy.tanh(dy.affine_transform([b_h, W_h, emb]))
  # Perform dropout
  if dropout != 0.0:
    h = dy.dropout(h, dropout)
  # Calculate the score and return
  W_sm = dy.parameter(W_sm_p)
  b_sm = dy.parameter(b_sm_p)
  return dy.affine_transform([b_sm, W_sm, h])

# Calculate the loss value for the entire sentence
TimeSignals.py 文件源码 项目:droppy 作者: BV-DR 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def reSample( df , dt = None , xAxis = None , n = None , kind = 'linear') :
   """ re-sample the signal """

   if type(df) == pd.Series : df = pd.DataFrame(df)

   f = interp1d( df.index, np.transpose(df.values) , kind=kind, axis=-1, copy=True, bounds_error=True, assume_sorted=True)
   if dt :
      end = int(+(df.index[-1] - df.index[0] ) / dt)  * dt +  df.index[0]
      xAxis = np.linspace( df.index[0] , end , 1+int(+(end - df.index[0] ) / dt) )
   elif n :
      xAxis = np.linspace( df.index[0] ,  df.index[-1] , n )
   elif xAxis == None :
      raise(Exception("reSample : either dt or xAxis should be provided" ))

   #For rounding issue, ensure that xAxis is within ts.xAxis
   #xAxis[ np.where( xAxis > np.max(df.index[:]) ) ] = df.index[ np.where( xAxis > np.max(df.index[:]) ) ]
   return pd.DataFrame( data = np.transpose(f(xAxis)), index = xAxis , columns = map( lambda x : "reSample("+ x +")" , df.columns  ) )
TimeSignals.py 文件源码 项目:droppy 作者: BV-DR 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def getPSD( df , dw = 0.05, roverlap = 0.5, window='hanning', detrend='constant') :
   """
      Compute the power spectral density
   """

   if type(df) == pd.Series : df = pd.DataFrame(df)

   nfft = int ( (2*pi / dw) / dx(df) )
   nperseg = 2**int(log(nfft)/log(2))
   noverlap = nperseg * roverlap

   """ Return the PSD of a time signal """
   try : 
      from scipy.signal import welch
   except :
      raise Exception("Welch function not found, please install scipy > 0.12")

   data = []
   for iSig in range(df.shape[1]) :
      test = welch( df.values[:,iSig]  , fs = 1. / dx(df) , window=window, nperseg=nperseg, noverlap=noverlap, nfft=nfft, detrend=detrend, return_onesided=True, scaling='density')
      data.append( test[1] / (2*pi) )
   xAxis = test[0][:] * 2*pi
   return pd.DataFrame( data = np.transpose(data), index = xAxis , columns = [ "psd("+ str(x) +")" for  x in df.columns ]  )
TimeSignals.py 文件源码 项目:droppy 作者: BV-DR 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def derivFFT(df, n=1  ) :
   """ Deriv a signal trought FFT, warning, edge can be a bit noisy...
   indexList : channel to derive
   n : order of derivation
   """
   deriv = []
   for iSig in range(df.shape[1]) :
      fft = np.fft.fft( df.values[:,iSig] )   #FFT
      freq = np.fft.fftfreq( df.shape[0] , dx(df) )

      from copy import deepcopy
      fft0 = deepcopy(fft)
      if n>0 :
         fft *= (1j * 2*pi* freq[:])**n                    #Derivation in frequency domain
      else :
         fft[-n:] *= (1j * 2*pi* freq[-n:])**n
         fft[0:-n] = 0.

      tts = np.real(np.fft.ifft(fft))
      tts -= tts[0]
      deriv.append( tts )    #Inverse FFT

   return pd.DataFrame( data = np.transpose(deriv), index = df.index , columns = [ "DerivFFT("+ x +")" for x in df.columns ]  )
wrangler.py 文件源码 项目:autonomio 作者: autonomio 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _starts_with_output(data, col):

    '''

    Helper function for to_integers in cases where
    the feature is categorized based on a common
    first character of a string.

    '''

    data[col] = data[col].fillna('0')
    temp_df = _category_starts_with(data, col)
    temp_df['start_char'] = temp_df[0]
    temp_df = temp_df.drop(0, axis=1)
    reference_df = temp_df.set_index('start_char').transpose()
    temp_list = []
    for i in range(len(data[col])):
        for c in temp_df['start_char']:
            if data[col][i].startswith(c) == True:
                temp_list.append(reference_df[c][0])
    if len(data[col]) != len(temp_list):
        print "AUTONOMIO ERROR: length of input and output do not match"
    else:
        return pd.Series(temp_list)
seam_carver.py 文件源码 项目:seam_carving 作者: dharness 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def reduce_height(img4, eng):
    """
    Reduces the height by 1 pixel

    Args:
        img4 (n,m,4 numpy matrix): RGB image with additional mask layer.
        eng (n,m numpy matrix): Pre-computed energy matrix for supplied image.

    Returns:
        tuple (
            n,1 numpy matrix: the removed seam,
            n-1,m,4 numpy matrix: The height-redcued image,
            float: The cost of the seam removed
        )
    """
    flipped_eng = np.transpose(eng)
    flipped_img4 = np.transpose(img4, (1, 0, 2))
    flipped_seam, reduced_flipped_img4, cost = reduce_width(flipped_img4, flipped_eng)
    return (
        np.transpose(flipped_seam),
        np.transpose(reduced_flipped_img4, (1, 0, 2)),
        cost
    )
measure_map.py 文件源码 项目:keras-frcnn 作者: yhenon 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def format_img(img, C):
    img_min_side = float(C.im_size)
    (height,width,_) = img.shape

    if width <= height:
        f = img_min_side/width
        new_height = int(f * height)
        new_width = int(img_min_side)
    else:
        f = img_min_side/height
        new_width = int(f * width)
        new_height = int(img_min_side)
    fx = width/float(new_width)
    fy = height/float(new_height)
    img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
    img = img[:, :, (2, 1, 0)]
    img = img.astype(np.float32)
    img[:, :, 0] -= C.img_channel_mean[0]
    img[:, :, 1] -= C.img_channel_mean[1]
    img[:, :, 2] -= C.img_channel_mean[2]
    img /= C.img_scaling_factor
    img = np.transpose(img, (2, 0, 1))
    img = np.expand_dims(img, axis=0)
    return img, fx, fy
DBCV.py 文件源码 项目:DBCV 作者: christopherjenness 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def _mutual_reach_dist_MST(dist_tree):
    """
    Computes minimum spanning tree of the mutual reach distance complete graph

    Args:
        dist_tree (np.ndarray): array of dimensions (n_samples, n_samples)
            Graph of all pair-wise mutual reachability distances
            between points.

    Returns: minimum_spanning_tree (np.ndarray)
        array of dimensions (n_samples, n_samples)
        minimum spanning tree of all pair-wise mutual reachability
            distances between points.
    """
    mst = minimum_spanning_tree(dist_tree).toarray()
    return mst + np.transpose(mst)


问题


面经


文章

微信
公众号

扫码关注公众号