python类inf()的实例源码

copula.py 文件源码 项目:mixedvines 作者: asnelt 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def logpdf(self, samples):
        '''
        Calculates the log of the probability density function.

        Parameters
        ----------
        samples : array_like
            n-by-2 matrix of samples where n is the number of samples.

        Returns
        -------
        vals : ndarray
            Log of the probability density function evaluated at `samples`.
        '''
        samples = np.copy(np.asarray(samples))
        samples = self.__rotate_input(samples)
        inner = np.all(np.bitwise_and(samples > 0.0, samples < 1.0), axis=1)
        outer = np.invert(inner)
        vals = np.zeros(samples.shape[0])
        vals[inner] = self._logpdf(samples[inner, :])
        # Assign zero mass to border
        vals[outer] = -np.inf
        return vals
copula.py 文件源码 项目:mixedvines 作者: asnelt 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _logcdf(self, samples):
        lower = np.full(2, -np.inf)
        upper = norm.ppf(samples)
        limit_flags = np.zeros(2)
        if upper.shape[0] > 0:

            def func1d(upper1d):
                '''
                Calculates the multivariate normal cumulative distribution
                function of a single sample.
                '''
                return mvn.mvndst(lower, upper1d, limit_flags, self.theta)[1]

            vals = np.apply_along_axis(func1d, -1, upper)
        else:
            vals = np.empty((0, ))
        old_settings = np.seterr(divide='ignore')
        vals = np.log(vals)
        np.seterr(**old_settings)
        vals[np.any(samples == 0.0, axis=1)] = -np.inf
        vals[samples[:, 0] == 1.0] = np.log(samples[samples[:, 0] == 1.0, 1])
        vals[samples[:, 1] == 1.0] = np.log(samples[samples[:, 1] == 1.0, 0])
        return vals
coord.py 文件源码 项目:plotnine 作者: has2k1 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def munch(self, data, panel_params):
        ranges = self.range(panel_params)

        data.loc[data['x'] == -np.inf, 'x'] = ranges.x[0]
        data.loc[data['x'] == np.inf, 'x'] = ranges.x[1]
        data.loc[data['y'] == -np.inf, 'y'] = ranges.y[0]
        data.loc[data['y'] == np.inf, 'y'] = ranges.y[1]

        dist = self.distance(data['x'], data['y'], panel_params)
        bool_idx = data['group'].iloc[1:].values != \
            data['group'].iloc[:-1].values
        dist[bool_idx] = np.nan

        # Munch
        munched = munch_data(data, dist)
        return munched
test_utils.py 文件源码 项目:plotnine 作者: has2k1 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_remove_missing():
    df = pd.DataFrame({'a': [1.0, np.NaN, 3, np.inf],
                       'b': [1, 2, 3, 4]})
    df2 = pd.DataFrame({'a': [1.0, 3, np.inf],
                       'b': [1, 3, 4]})
    df3 = pd.DataFrame({'a': [1.0, 3],
                       'b': [1, 3]})

    with warnings.catch_warnings(record=True) as w:
        res = remove_missing(df, na_rm=True, vars=['b'])
        res.equals(df)

        res = remove_missing(df)
        res.equals(df2)

        res = remove_missing(df, na_rm=True, finite=True)
        res.equals(df3)
        assert len(w) == 1
test_stat.py 文件源码 项目:plotnine 作者: has2k1 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_removes_infinite_values():
    df = mtcars.copy()
    df.loc[[0, 5], 'wt'] = [np.inf, -np.inf]
    p = ggplot(df, aes(x='wt')) + geom_bar()

    with pytest.warns(UserWarning) as record:
        p._build()

    def removed_2_row_with_infinites(record):
        for item in record:
            msg = str(item.message).lower()
            if '2 rows' in msg and 'non-finite' in msg:
                return True
        return False

    assert removed_2_row_with_infinites(record)
exppow.py 文件源码 项目:MOSFiT 作者: guillochon 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def process(self, **kwargs):
        """Process module."""
        self._times = kwargs[self.key('dense_times')]
        self._alpha = kwargs[self.key('alpha')]
        self._beta = kwargs[self.key('beta')]
        self._t_peak = kwargs[self.key('tpeak')]
        self._lum_scale = kwargs[self.key('lumscale')]
        self._rest_t_explosion = kwargs[self.key('resttexplosion')]

        ts = [
            np.inf
            if self._rest_t_explosion > x else (x - self._rest_t_explosion)
            for x in self._times
        ]

        luminosities = [
            self._lum_scale * (1.0 - np.exp(-t / self._t_peak)) **
            self._alpha * (t / self._t_peak) ** (-self._beta) for t in ts
        ]
        luminosities = [0.0 if isnan(x) else x for x in luminosities]

        return {self.dense_key('luminosities'): luminosities}
nickelcobalt.py 文件源码 项目:MOSFiT 作者: guillochon 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def process(self, **kwargs):
        """Process module."""
        self._times = kwargs[self.key('dense_times')]
        self._mnickel = kwargs[self.key('fnickel')] * kwargs[
            self.key('mejecta')]
        self._rest_t_explosion = kwargs[self.key('resttexplosion')]

        # From 1994ApJS...92..527N
        ts = [
            np.inf
            if self._rest_t_explosion > x else (x - self._rest_t_explosion)
            for x in self._times
        ]
        luminosities = [
            self._mnickel * (self.NI56_LUM * np.exp(-t / self.NI56_LIFE) +
                             self.CO56_LUM * np.exp(-t / self.CO56_LIFE))
            for t in ts
        ]
        luminosities = [0.0 if isnan(x) else x for x in luminosities]

        return {self.dense_key('luminosities'): luminosities}
linearcorex.py 文件源码 项目:LinearCorex 作者: gregversteeg 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def pick_n_hidden(data, repeat=1, verbose=False, **kwargs):
    """A helper function to pick the number of hidden factors / clusters to use."""
    # TODO: Use an efficient search strategy
    max_score = - np.inf
    n = 1
    all_scores = []
    while True:
        scores = []
        for _ in range(repeat):
            out = Corex(n_hidden=n, gpu=False, **kwargs).fit(data)
            m = out.moments
            scores.append(m["TC_no_overlap"])
        score = max(scores)
        if verbose:
            print(("n: {}, score: {}".format(n, score)))
        all_scores.append((score, n))
        if score < 0.95 * max_score:
            break
        else:
            n += 1
            if score > max_score:
                max_score = score
    return all_scores
test_attacks.py 文件源码 项目:cleverhans 作者: tensorflow 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def help_generate_np_gives_adversarial_example(self, ord):
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        x_adv = self.attack.generate_np(x_val, eps=.5, ord=ord,
                                        clip_min=-5, clip_max=5)
        if ord == np.inf:
            delta = np.max(np.abs(x_adv - x_val), axis=1)
        elif ord == 1:
            delta = np.sum(np.abs(x_adv - x_val), axis=1)
        elif ord == 2:
            delta = np.sum(np.square(x_adv - x_val), axis=1)**.5
        self.assertClose(delta, 0.5)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)
        self.assertTrue(np.mean(orig_labs == new_labs) < 0.5)
test_attacks.py 文件源码 项目:cleverhans 作者: tensorflow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_attack_strength(self):
        """
        If clipping is not done at each iteration (not passing clip_min and
        clip_max to fgm), this attack fails by
        np.mean(orig_labels == new_labels) == .39.
        """
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        x_adv = self.attack.generate_np(x_val, eps=1.0, ord=np.inf,
                                        clip_min=0.5, clip_max=0.7,
                                        nb_iter=5)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)
        self.assertTrue(np.mean(orig_labs == new_labs) < 0.1)
masking_methods.py 文件源码 项目:mss_pytorch 作者: Js-Mim 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def ExpM(self):
        """
            Approximate a signal via element-wise exponentiation. As appears in :
            S.I. Mimilakis, K. Drossos, T. Virtanen, and G. Schuller,
            "Deep Neural Networks for Dynamic Range Compression in Mastering Applications,"
            in proc. of the 140th Audio Engineering Society Convention, Paris, 2016.
        Args:
            sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
            nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
        Returns:
            mask:      (2D ndarray) Array that contains time frequency gain values

        """
        print('Exponential mask')
        self._mask = np.divide(np.log(self._sTarget.clip(self._eps, np.inf)**self._alpha),\
                               np.log(self._nResidual.clip(self._eps, np.inf)**self._alpha))
logit_rules.py 文件源码 项目:mitre 作者: gerberlab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def prior_contribution_phylogeny_parameters(self, state):
        """ Evaluate prior probability of phylogeny mean/std

        Log scale.

        """
        mean_prior = scipy.stats.norm.logpdf(
            state.phylogeny_mean,
            loc = self.phylogeny_lambda_l,
            scale = np.sqrt(self.phylogeny_mean_hyperprior_variance)
        )
        if (0. <= state.phylogeny_std and
            state.phylogeny_std <= self.phylogeny_std_upper_bound):
            std_prior = -1.0*np.log(self.phylogeny_std_upper_bound)
        else:
            std_prior = -np.inf
        return mean_prior + std_prior
test_tree_operators.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def getError(self):
        #Test function
        fx = lambda x, y: np.sin(2*np.pi*x)
        fy = lambda x, y: np.sin(2*np.pi*y)
        sol = lambda x, y: 2*np.pi*(np.cos(2*np.pi*x)+np.cos(2*np.pi*y))

        Fc = cartF2(self.M, fx, fy)
        F = self.M.projectFaceVector(Fc)

        divF = self.M.faceDiv.dot(F)
        divF_ana = call2(sol, self.M.gridCC)

        err = np.linalg.norm((divF-divF_ana), np.inf)

        # self.M.plotImage(divF-divF_ana, showIt=True)

        return err
test_tree_operators.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def getError(self):
        # fun: i (cos(y)) + j (cos(z)) + k (cos(x))
        # sol: i (sin(z)) + j (sin(x)) + k (sin(y))

        funX = lambda x, y, z: np.cos(2*np.pi*y)
        funY = lambda x, y, z: np.cos(2*np.pi*z)
        funZ = lambda x, y, z: np.cos(2*np.pi*x)

        solX = lambda x, y, z: 2*np.pi*np.sin(2*np.pi*z)
        solY = lambda x, y, z: 2*np.pi*np.sin(2*np.pi*x)
        solZ = lambda x, y, z: 2*np.pi*np.sin(2*np.pi*y)

        Ec = cartE3(self.M, funX, funY, funZ)
        E = self.M.projectEdgeVector(Ec)

        Fc = cartF3(self.M, solX, solY, solZ)
        curlE_ana = self.M.projectFaceVector(Fc)

        curlE = self.M.edgeCurl.dot(E)

        err = np.linalg.norm((curlE - curlE_ana), np.inf)
        # err = np.linalg.norm((curlE - curlE_ana)*self.M.area, 2)

        return err
test_tree_operators.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def getError(self):
        #Test function
        fun = lambda x, y, z: (np.cos(x)+np.cos(y)+np.cos(z))
        # i (sin(x)) + j (sin(y)) + k (sin(z))
        solX = lambda x, y, z: -np.sin(x)
        solY = lambda x, y, z: -np.sin(y)
        solZ = lambda x, y, z: -np.sin(z)

        phi = call3(fun, self.M.gridN)
        gradE = self.M.nodalGrad.dot(phi)

        Ec = cartE3(self.M, solX, solY, solZ)
        gradE_ana = self.M.projectEdgeVector(Ec)

        err = np.linalg.norm((gradE-gradE_ana), np.inf)

        return err
test_tree_operators.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def getError(self):
        #Test function
        fun = lambda x, y: (np.cos(x)+np.cos(y))
        # i (sin(x)) + j (sin(y)) + k (sin(z))
        solX = lambda x, y: -np.sin(x)
        solY = lambda x, y: -np.sin(y)

        phi = call2(fun, self.M.gridN)
        gradE = self.M.nodalGrad.dot(phi)

        Ec = cartE2(self.M, solX, solY)
        gradE_ana = self.M.projectEdgeVector(Ec)

        err = np.linalg.norm((gradE-gradE_ana), np.inf)

        return err
test_cyl.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def getError(self):

        funR = lambda r, z: np.sin(2.*np.pi*r)
        funZ = lambda r, z: np.sin(2.*np.pi*z)

        sol = lambda r, t, z: (2*np.pi*r*np.cos(2*np.pi*r) + np.sin(2*np.pi*r))/r + 2*np.pi*np.cos(2*np.pi*z)

        Fc = cylF2(self.M, funR, funZ)
        Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]]
        F = self.M.projectFaceVector(Fc)

        divF = self.M.faceDiv.dot(F)
        divF_ana = call3(sol, self.M.gridCC)

        err = np.linalg.norm((divF-divF_ana), np.inf)
        return err
test_cyl.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def getError(self):

        funR = lambda r, z: np.sin(2.*np.pi*z) * np.cos(np.pi*r)
        funZ = lambda r, z: np.sin(3.*np.pi*z) * np.cos(2.*np.pi*r)

        Fc = cylF2(self.M, funR, funZ)
        Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]]
        F = self.M.projectFaceVector(Fc)

        aveF = self.M.aveF2CCV * F

        aveF_anaR = funR(self.M.gridCC[:, 0], self.M.gridCC[:, 2])
        aveF_anaZ = funZ(self.M.gridCC[:, 0], self.M.gridCC[:, 2])

        aveF_ana = np.hstack([aveF_anaR, aveF_anaZ])

        err = np.linalg.norm((aveF-aveF_ana), np.inf)
        return err
test_operators.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def getError(self):
        #Test function
        fx = lambda x: -2*np.pi*np.sin(2*np.pi*x)
        sol = lambda x: np.cos(2*np.pi*x)


        xc = sol(self.M.gridCC)

        gradX_ana = fx(self.M.gridFx)

        bc = np.array([1,1])
        self.M.setCellGradBC('dirichlet')
        gradX = self.M.cellGrad.dot(xc) + self.M.cellGradBC*bc

        err = np.linalg.norm((gradX-gradX_ana), np.inf)

        return err
test_operators.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def getError(self):
        #Test function
        fx = lambda x, y: 2*np.pi*np.cos(2*np.pi*x)*np.sin(2*np.pi*y)
        fy = lambda x, y: 2*np.pi*np.cos(2*np.pi*y)*np.sin(2*np.pi*x)
        sol = lambda x, y: np.sin(2*np.pi*x)*np.sin(2*np.pi*y)

        xc = call2(sol, self.M.gridCC)

        Fc = cartF2(self.M, fx, fy)
        gradX_ana = self.M.projectFaceVector(Fc)

        self.M.setCellGradBC('dirichlet')
        gradX = self.M.cellGrad.dot(xc)

        err = np.linalg.norm((gradX-gradX_ana), np.inf)

        return err
kshape.py 文件源码 项目:rca-evaluation 作者: sieve-microservices 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _ncc_c(x, y):
    """
    >>> _ncc_c([1,2,3,4], [1,2,3,4])
    array([ 0.13333333,  0.36666667,  0.66666667,  1.        ,  0.66666667,
            0.36666667,  0.13333333])
    >>> _ncc_c([1,1,1], [1,1,1])
    array([ 0.33333333,  0.66666667,  1.        ,  0.66666667,  0.33333333])
    >>> _ncc_c([1,2,3], [-1,-1,-1])
    array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
    """
    den = np.array(norm(x) * norm(y))
    den[den == 0] = np.Inf

    x_len = len(x)
    fft_size = 1<<(2*x_len-1).bit_length()
    cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
    cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
    return np.real(cc) / den
transformations.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
pySLUtilities.py 文件源码 项目:pyshearlab 作者: stefanloock 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def SLcomputeSNR(X, Xnoisy):
    """
    SLcomputeSNR Compute signal to noise ratio (SNR).

    Usage:

        SNR = SLcomputeSNR(X, Xnoisy)

    Input:

        X:      2D or 3D signal.
        Xnoisy: 2D or 3D noisy signal.

    Output:

        SNR: The signal to noise ratio (in dB).
    """

    if np.linalg.norm(X-Xnoisy) == 0:
        return np.Inf
    else:
        return 10 * np.log10( np.sum(np.power(X,2)) / np.sum(np.power(X-Xnoisy,2)) )
cma_es_lib.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
relu.py 文件源码 项目:vampyre 作者: GAMPTeam 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def __init__(self,shape,z0rep_axes=(0,), z1rep_axes=(0,), map_est=False):
        Estim.__init__(self)
        self.shape = shape
        ndim = len(shape)
        if z0rep_axes == 'all':
            z0rep_axes = tuple(range(ndim))
        if z1rep_axes == 'all':
            z1rep_axes = tuple(range(ndim))            
        self.z0rep_axes = z0rep_axes
        self.z1rep_axes = z1rep_axes
        self.cost_avail = True
        self.map_est = map_est

        # Initial variances
        self.zvar0_init= np.Inf
        self.zvar1_init= np.Inf
interval.py 文件源码 项目:vampyre 作者: GAMPTeam 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self,y,shape,zrep_axes=(0,),thresh=0,perr=1e-6,\
                 var_init=np.Inf):

        Estim.__init__(self)
        self.y = y
        self.shape = shape
        self.thresh = thresh
        self.perr = perr
        self.cost_avail = True
        self.var_init = var_init

        # Set the repetition axes
        ndim = len(self.shape)
        if zrep_axes == 'all':
            zrep_axes = tuple(range(ndim))
        self.zrep_axes = zrep_axes
cma_es_lib.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in range(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in range(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
callbacks.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0
        self.lr_epsilon = self.min_lr * 1e-4
test_graynet.py 文件源码 项目:graynet 作者: raamana 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_invalid_nbins():
    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.NaN)

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.Inf)

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=2)


# test_multi_edge()
# test_multi_edge_CLI()
# test_empty_subject_list()
# test_run_no_IO()
# test_run_roi_stats_via_API()
# test_run_roi_stats_via_CLI()
# test_CLI_only_weight_or_stats()
cma.py 文件源码 项目:cma 作者: hardmaru 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def initialize(self, length=None):
        """see ``__init__``"""
        if length is None:
            length = len(self.bounds)
        max_i = min((len(self.bounds) - 1, length - 1))
        self._lb = array([self.bounds[min((i, max_i))][0]
                          if self.bounds[min((i, max_i))][0] is not None
                          else -np.Inf
                          for i in xrange(length)], copy=False)
        self._ub = array([self.bounds[min((i, max_i))][1]
                          if self.bounds[min((i, max_i))][1] is not None
                          else np.Inf
                          for i in xrange(length)], copy=False)
        lb = self._lb
        ub = self._ub
        # define added values for lower and upper bound
        self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
                             if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
        self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
                             if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)


问题


面经


文章

微信
公众号

扫码关注公众号