python类inf()的实例源码

nb.py 文件源码 项目:hippylib 作者: hippylib 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def plot_eigenvectors(Vh, U, mytitle, which = [0,1,2,5,10,15]):
    assert len(which) % 3 == 0
    nrows = len(which) / 3
    subplot_loc = nrows*100 + 30
    plt.figure(figsize=(18,4*nrows))

    title_stamp = mytitle + " {0}" 
    u = dl.Function(Vh)
    counter=1
    for i in which:
        assert i < U.shape[1]
        Ui = U[:,i]
        if Ui[0] >= 0:
            s = 1./np.linalg.norm(Ui, np.inf)
        else:
            s = -1./np.linalg.norm(Ui, np.inf)
        u.vector().set_local(s*Ui)
        plot(u, subplot_loc=(subplot_loc+counter), mytitle=title_stamp.format(i), vmin=-1, vmax=1)
        counter = counter+1
posterior.py 文件源码 项目:hippylib 作者: hippylib 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def exportU(self, Vh, fname, varname = "evect", normalize=1):
        """
        Export in paraview the generalized eigenvectors U.
        Inputs:
        - Vh:        the parameter finite element space
        - fname:     the name of the paraview output file
        - varname:   the name of the paraview variable
        - normalize: if True the eigenvector are rescaled such that || u ||_inf = 1 
        """
        evect = Function(Vh, name=varname)
        fid = File(fname)

        for i in range(0,self.U.shape[1]):
            Ui = self.U[:,i]
            if normalize:
                s = 1/np.linalg.norm(Ui, np.inf)
                evect.vector().set_local(s*Ui)
            else:
                evect.vector().set_local(Ui)
            fid << evect
hyperband.py 文件源码 项目:hyperband 作者: zygmuntz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__( self, get_params_function, try_params_function ):
        self.get_params = get_params_function
        self.try_params = try_params_function

        self.max_iter = 81      # maximum iterations per configuration
        self.eta = 3            # defines configuration downsampling rate (default = 3)

        self.logeta = lambda x: log( x ) / log( self.eta )
        self.s_max = int( self.logeta( self.max_iter ))
        self.B = ( self.s_max + 1 ) * self.max_iter

        self.results = []   # list of dicts
        self.counter = 0
        self.best_loss = np.inf
        self.best_counter = -1


    # can be called multiple times
plot_quasar_transform.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
plot_quasar_scatter.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 64 收藏 0 点赞 0 评论 0
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
bbobbenchmarks.py 文件源码 项目:pycma 作者: CMA-ES 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def monotoneTFosc(f):
    """Maps [-inf,inf] to [-inf,inf] with different constants
    for positive and negative part.

    """
    if np.isscalar(f):
        if f > 0.:
            f = np.log(f) / 0.1
            f = np.exp(f + 0.49 * (np.sin(f) + np.sin(0.79 * f))) ** 0.1
        elif f < 0.:
            f = np.log(-f) / 0.1
            f = -np.exp(f + 0.49 * (np.sin(0.55 * f) + np.sin(0.31 * f))) ** 0.1
        return f
    else:
        f = np.asarray(f)
        g = f.copy()
        idx = (f > 0)
        g[idx] = np.log(f[idx]) / 0.1
        g[idx] = np.exp(g[idx] + 0.49 * (np.sin(g[idx]) + np.sin(0.79 * g[idx])))**0.1
        idx = (f < 0)
        g[idx] = np.log(-f[idx]) / 0.1
        g[idx] = -np.exp(g[idx] + 0.49 * (np.sin(0.55 * g[idx]) + np.sin(0.31 * g[idx])))**0.1
        return g
vrep_env.py 文件源码 项目:vrep-env 作者: ycps 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_float_parameter(self, param_id):
        return self.RAPI_rc(vrep.simxGetFloatingParameter( self.cID,
            param_id,
            vrep.simx_opmode_blocking))[0]

    # openai/gym

    # Set this in SOME subclasses
    #metadata = {'render.modes': []}
    #reward_range = (-np.inf, np.inf)

    # Override in SOME subclasses
    #def _close(self): pass

    # Set these in ALL subclasses
    #action_space = None
    #observation_space = None

    # Override in ALL subclasses
    #def _step(self, action): raise NotImplementedError
    #def _reset(self): raise NotImplementedError
    #def _render(self, mode='human', close=False): return
    #def _seed(self, seed=None): return []
RelativeDualityGap.py 文件源码 项目:invo 作者: rafidrm 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _solveRelativeDG(self, points):
        """ Solves the norm constrained version of the problem.

            min sum z_q
            st  z_q >= c'x_q - 1
                z_q >= 1 - c'x_q
                A'y = c
                b'y = 1
                ||c|| = 1
                y >= 0
        """
        if self.normalize_c == 1:
            error = self._solveRelativeDGNorm1(points)
        elif self.normalize_c == np.inf:
            error = self._solveRelativeDGNormInf(points)
        return error
pNorm.py 文件源码 项目:invo 作者: rafidrm 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _solveFeasibleProjection(self, points):
        m, n = self.A.shape
        bestResult = np.inf

        for i in range(m):
            if i in self.ban_constraints:
                result = np.inf
            else:
                ai = self.A[i]
                bi = self.b[i]
                result = self._project_to_hyperplane(points, ai, bi)

            if result < bestResult:
                bestResult = result
                self.dual = np.zeros(m)
                self.dual[i] = 1.0 / np.linalg.norm(ai, np.inf)
                self.c = ai / np.linalg.norm(ai, np.inf)
        self._solved = True
        #self.dual = self.dual.T.tolist()[0]
        self.c = self.c.tolist()[0]
        self.error = bestResult
        return result
pNorm.py 文件源码 项目:invo 作者: rafidrm 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def _initialize_kwargs(self, kwargs):
        # common kwargs
        if 'verbose' in kwargs:
            assert isinstance(kwargs['verbose'],
                              bool), 'verbose needs to be True or False.'
            self._verbose = kwargs['verbose']
        if 'tol' in kwargs:
            assert isinstance(kwargs['tol'],
                              int), 'tolerance needs to be an integer.'
            self.tol = kwargs['tol']

        # class specific kwargs
        if 'p' in kwargs:
            assert isinstance(
                kwargs['p'],
                int) or kwargs['p'] is 'inf', 'p needs to be an integer'
            self.p = kwargs['p']

        return kwargs
train.py 文件源码 项目:DeepWorks 作者: daigo0927 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _build_graph(self, image_size):

        self.image_size = image_size
        self.images = tf.placeholder(tf.float32,
                                     shape = (None, image_size, image_size, 3))
        images_mini = tf.image.resize_images(self.images,
                                             size = (int(image_size/4),
                                                     int(image_size/4)))
        self.images_blur = tf.image.resize_images(images_mini,
                                                  size = (image_size, image_size))

        self.net = U_Net(output_ch = 3, block_fn = 'origin')
        self.images_reconst = self.net(self.images_blur, reuse = False)
        # self.image_reconst can be [-inf +inf], so need to clip its value if visualize them as images.
        self.loss = tf.reduce_mean((self.images_reconst - self.images)**2)
        self.opt = tf.train.AdamOptimizer()\
                           .minimize(self.loss, var_list = self.net.vars)

        self.saver = tf.train.Saver()
        self.sess.run(tf.global_variables_initializer())
test_pitch.py 文件源码 项目:psola 作者: jcreinhold 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_pitch_estimation(self):
        """
        test pitch estimation algo with contrived small example
        if pitch is within 5 Hz, then say its good (for this small example,
        since the algorithm wasn't made for this type of synthesized signal)
        """
        cfg = ExperimentConfig(pitch_strength_thresh=-np.inf)
        # the next 3 variables are in Hz
        tolerance = 5
        fs = 48000
        f = 150
        # create a sine wave of f Hz freq sampled at fs Hz
        x = np.sin(2*np.pi * f/fs * np.arange(2**10))
        # estimate the pitch, it should be close to f
        p, t, s = pest.pitch_estimation(x, fs, cfg)
        self.assertTrue(np.all(np.abs(p - f) < tolerance))
test_PlotCurveItem.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_PlotCurveItem():
    p = pg.GraphicsWindow()
    p.ci.layout.setContentsMargins(4, 4, 4, 4)  # default margins vary by platform
    v = p.addViewBox()
    p.resize(200, 150)
    data = np.array([1,4,2,3,np.inf,5,7,6,-np.inf,8,10,9,np.nan,-1,-2,0])
    c = pg.PlotCurveItem(data)
    v.addItem(c)
    v.autoRange()

    # Check auto-range works. Some platform differences may be expected..
    checkRange = np.array([[-1.1457564053237301, 16.145756405323731], [-3.076811473165955, 11.076811473165955]])
    assert np.allclose(v.viewRange(), checkRange)

    assertImageApproved(p, 'plotcurveitem/connectall', "Plot curve with all points connected.")

    c.setData(data, connect='pairs')
    assertImageApproved(p, 'plotcurveitem/connectpairs', "Plot curve with pairs connected.")

    c.setData(data, connect='finite')
    assertImageApproved(p, 'plotcurveitem/connectfinite', "Plot curve with finite points connected.")

    c.setData(data, connect=np.array([1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0]))
    assertImageApproved(p, 'plotcurveitem/connectarray', "Plot curve with connection array.")
test_functions.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
event.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`Event` corresponding to the time slice of
        the original :class:`Event` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf

        indices = (self >= _t_start) & (self <= _t_stop)
        new_evt = self[indices]

        return new_evt
epoch.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`Epoch` corresponding to the time slice of
        the original :class:`Epoch` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf

        indices = (self >= _t_start) & (self <= _t_stop)

        new_epc = self[indices]
        new_epc.durations = self.durations[indices]
        new_epc.labels = self.labels[indices]
        return new_epc
test_functions.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
epoch.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`Epoch` corresponding to the time slice of
        the original :class:`Epoch` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf

        indices = (self >= _t_start) & (self <= _t_stop)

        new_epc = self[indices]
        new_epc.durations = self.durations[indices]
        new_epc.labels = self.labels[indices]
        return new_epc
spiketrain.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`SpikeTrain` corresponding to the time slice of
        the original :class:`SpikeTrain` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf
        indices = (self >= _t_start) & (self <= _t_stop)
        new_st = self[indices]

        new_st.t_start = max(_t_start, self.t_start)
        new_st.t_stop = min(_t_stop, self.t_stop)
        if self.waveforms is not None:
            new_st.waveforms = self.waveforms[indices]

        return new_st
studykde.py 文件源码 项目:bayestsa 作者: thalesians 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __call__(self, params):
        print '???', params
        sd1 = params[0]
        sd2 = params[1]
        cor = params[2]

        if sd1 < 0. or sd1 > 10. or sd2 < 0. or sd2 > 10. or cor < -1. or cor > 1.:
            return np.inf

        bandwidth = maths.stats.choleskysqrt2d(sd1, sd2, cor)
        bandwidthdet = la.det(bandwidth)
        bandwidthinv = la.inv(bandwidth)

        diff = sample[self.__iidx] - sample[self.__jidx]
        temp = diff.dot(bandwidthinv.T)
        temp *= temp
        e = np.exp(np.sum(temp, axis=1))
        s = np.sum(e**(-.25) - 4 * e**(-.5))

        cost = self.__n / bandwidthdet + (2. / bandwidthdet) * s
        print '!!!', cost
        return cost / 10000.
test_dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_ecdf_formal_custom():
    assert dcst.ecdf_formal(0.1, [0, 1, 2, 3]) == 0.25
    assert dcst.ecdf_formal(-0.1, [0, 1, 2, 3]) == 0.0
    assert dcst.ecdf_formal(0.1, [3, 2, 0, 1]) == 0.25
    assert dcst.ecdf_formal(-0.1, [3, 2, 0, 1]) == 0.0
    assert dcst.ecdf_formal(2, [3, 2, 0, 1]) == 0.75
    assert dcst.ecdf_formal(1, [3, 2, 0, 1]) == 0.5
    assert dcst.ecdf_formal(3, [3, 2, 0, 1]) == 1.0
    assert dcst.ecdf_formal(0, [3, 2, 0, 1]) == 0.25

    with pytest.raises(RuntimeError) as excinfo:
        dcst.ecdf_formal([np.nan, np.inf], [0, 1, 2, 3])
    excinfo.match('Input cannot have NaNs.')

    correct = np.array([1.0, 1.0])
    result = dcst.ecdf_formal([3.1, np.inf], [3, 2, 0, 1])
    assert np.allclose(correct, result, atol=atol)
test_dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_draw_bs_pairs_linreg_nan():
    x = np.array([])
    y = np.array([])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan])
    y = np.array([np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan, 1])
    y = np.array([1, np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([0, 1, 5])
    y = np.array([1, np.inf, 3])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('All entries in arrays must be finite.')
test_dc_stat_think.py 文件源码 项目:dc_stat_think 作者: justinbois 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_pearson_r_edge():
    x = np.array([])
    y = np.array([])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan])
    y = np.array([np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan, 1])
    y = np.array([1, np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([0, 1, 5])
    y = np.array([1, np.inf, 3])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('All entries in arrays must be finite.')
data_transforms.py 文件源码 项目:dsb3 作者: EliasVansteenkiste 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def make_3d_mask(img_shape, center, radius, shape='sphere'):
    mask = np.zeros(img_shape)
    radius = np.rint(radius)
    center = np.rint(center)
    sz = np.arange(int(max(center[0] - radius, 0)), int(max(min(center[0] + radius + 1, img_shape[0]), 0)))
    sy = np.arange(int(max(center[1] - radius, 0)), int(max(min(center[1] + radius + 1, img_shape[1]), 0)))
    sx = np.arange(int(max(center[2] - radius, 0)), int(max(min(center[2] + radius + 1, img_shape[2]), 0)))
    sz, sy, sx = np.meshgrid(sz, sy, sx)
    if shape == 'cube':
        mask[sz, sy, sx] = 1.
    elif shape == 'sphere':
        distance2 = ((center[0] - sz) ** 2
                     + (center[1] - sy) ** 2
                     + (center[2] - sx) ** 2)
        distance_matrix = np.ones_like(mask) * np.inf
        distance_matrix[sz, sy, sx] = distance2
        mask[(distance_matrix <= radius ** 2)] = 1
    elif shape == 'gauss':
        z, y, x = np.ogrid[:mask.shape[0], :mask.shape[1], :mask.shape[2]]
        distance = ((z - center[0]) ** 2 + (y - center[1]) ** 2 + (x - center[2]) ** 2)
        mask = np.exp(- 1. * distance / (2 * radius ** 2))
        mask[(distance > 3 * radius ** 2)] = 0
    return mask
dataIO.py 文件源码 项目:WGAN_GP 作者: daigo0927 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, datadir,
                 target_size = 108, image_size = 64,
                 split = 5, num_utilize = np.inf):

        self.datadir = datadir
        self.target_size = target_size
        self.image_size = image_size
        self.split = split

        self.image_paths = []
        for d in self.datadir:
            self.image_paths += glob(d + '/*.jpg')
        self.data_size = min(len(self.image_paths), num_utilize)
        print('data size : {}'.format(self.data_size))
        self.image_paths = np.random.choice(self.image_paths,
                                            self.data_size,
                                            replace = False)
        self.data = None
pySLUtilities.py 文件源码 项目:pyshearlab 作者: stefanloock 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def SLcomputePSNR(X, Xnoisy):
    """
    SLcomputePSNR Compute peak signal to noise ratio (PSNR).

    Usage:

        PSNR = SLcomputePSNR(X, Xnoisy)

    Input:

        X:      2D or 3D signal.
        Xnoisy: 2D or 3D noisy signal.

    Output:

        PSNR: The peak signal to noise ratio (in dB).
    """

    MSEsqrt = np.linalg.norm(X-Xnoisy) / np.sqrt(X.size)
    if MSEsqrt == 0:
        return np.inf
    else:
        return 20 * np.log10(255 / MSEsqrt)
biaffine.py 文件源码 项目:nn4nlp-code 作者: neubig 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def decoding(self, src_encodings):
        src_len = len(src_encodings)

        # NOTE: should transpose before calling `mst` method!
        s_arc, s_label = self.cal_scores(src_encodings)
        s_arc_values = s_arc.npvalue().transpose()  # src_len, src_len
        s_label_values = np.asarray([x.npvalue() for x in s_label]).transpose((2, 1, 0))  # src_len, src_len, n_labels

        # weights = np.zeros((src_len + 1, src_len + 1))
        # weights[0, 1:(src_len + 1)] = np.inf
        # weights[1:(src_len + 1), 0] = np.inf
        # weights[1:(src_len + 1), 1:(src_len + 1)] = s_arc_values[batch]
        weights = s_arc_values
        pred_heads = mst(weights)
        pred_labels = [np.argmax(labels[head]) for head, labels in zip(pred_heads, s_label_values)]

        return pred_heads, pred_labels
fits2skymodel.py 文件源码 项目:atoolbox 作者: liweitianux 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, image, freq, pixelsize, ra0, dec0,
                 minvalue=1e-4, maxvalue=np.inf, mask=None,
                 projection="CAR"):
        self.image = image  # [K] (brightness temperature)
        self.freq = freq  # [MHz]
        self.pixelsize = pixelsize  # [arcsec]
        self.ra0 = ra0  # [deg]
        self.dec0 = dec0  # [deg]
        self.minvalue = minvalue
        self.maxvalue = maxvalue
        self.mask = mask
        self.projection = projection
        logger.info("SkyModel: Loaded image @ %.2f [MHz], " % freq +
                    "%.1f [arcsec/pixel]" % pixelsize)
        logger.info("Image size: %dx%d" % self.shape)
        logger.info("FoV size: %.2fx%.2f [deg^2]" % self.fov)
mixedmodels.py 文件源码 项目:histwords 作者: williamleif 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def make_data_frame(words, years, feature_dict):
    """
    Makes a pandas dataframe for word, years, and dictionary of feature funcs.
    Each feature func should take (word, year) and return feature value.
    Constructed dataframe has flat csv style structure and missing values are removed.
    """

    temp = collections.defaultdict(list)
    feature_dict["word"] = lambda word, year : word
    feature_dict["year"] = lambda word, year : year
    for word in words:
        for year in years:
            for feature, feature_func in feature_dict.iteritems():
                temp[feature].append(feature_func(word, year))
    df = pd.DataFrame(temp)
    df = df.replace([np.inf, -np.inf], np.nan)
    df = df.dropna()
    return df
rl_utils.py 文件源码 项目:rlflow 作者: tpbarron 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def run_test_episode(env, policy, episode_len=np.inf, render=False):
    """
    Run an episode and return the reward
    """
    episode_itr = 0
    total_reward = 0.0
    done = False
    obs = env.reset()
    while not done and episode_itr < episode_len:
        if render:
            env.render()

        obs = apply_prediction_preprocessors(policy, obs)
        action = policy.predict(obs)
        action = apply_prediction_postprocessors(policy, action)

        obs, reward, done, _ = env.step(action)

        total_reward += reward
        episode_itr += 1

    return total_reward


问题


面经


文章

微信
公众号

扫码关注公众号