python类float64()的实例源码

test_FFT.py 文件源码 项目:mpiFFT4py 作者: spectralDNS 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_FFT2(FFT2):
    N = FFT2.N
    if FFT2.rank == 0:
        A = random(N).astype(FFT2.float)

    else:
        A = zeros(N, dtype=FFT2.float)

    atol, rtol = (1e-10, 1e-8) if FFT2.float is float64 else (5e-7, 1e-4)
    FFT2.comm.Bcast(A, root=0)
    a = zeros(FFT2.real_shape(), dtype=FFT2.float)
    c = zeros(FFT2.complex_shape(), dtype=FFT2.complex)
    a[:] = A[FFT2.real_local_slice()]
    c = FFT2.fft2(a, c)
    B2 = zeros(FFT2.global_complex_shape(), dtype=FFT2.complex)
    B2 = rfft2(A, B2, axes=(0,1))
    assert allclose(c, B2[FFT2.complex_local_slice()], rtol, atol)
    a = FFT2.ifft2(c, a)
    assert allclose(a, A[FFT2.real_local_slice()], rtol, atol)
device.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def ai_lowpass_cutoff_freq_range_vals(self):
        """
        List[float]: Indicates pairs of lowpass cutoff frequency ranges
            supported by this device. Each pair consists of the low
            value, followed by the high value. If the device supports a
            set of discrete lowpass cutoff frequencies, use
            **ai_lowpass_cutoff_freq_discrete_vals** to determine the
            supported  frequencies.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAILowpassCutoffFreqRangeVals
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
write_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def _write_analog_f_64(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteAnalogF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
write_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def _write_ctr_freq(
        task_handle, freq, duty_cycle, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    num_samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteCtrFreq
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, freq, duty_cycle,
        ctypes.byref(num_samps_per_chan_written), None)
    check_for_error(error_code)

    return num_samps_per_chan_written.value
read_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _read_analog_f_64(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadAnalogF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    c_bool32,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
read_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _read_counter_f_64(task_handle, read_array, num_samps_per_chan, timeout):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
read_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _read_counter_f_64_ex(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterF64Ex
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
read_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _read_ctr_freq(
        task_handle, freq, duty_cycle, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrFreq
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        freq, duty_cycle, numpy.prod(freq.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
read_functions.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _read_ctr_time(
        task_handle, high_time, low_time, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrTime
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        high_time, low_time, numpy.prod(high_time.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
test_invalid_writes.py 文件源码 项目:nidaqmx-python 作者: ni 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_insufficient_numpy_write_data(self, x_series_device, seed):
        # Reset the pseudorandom number generator with seed.
        random.seed(seed)

        # Randomly select physical channels to test.
        number_of_channels = random.randint(
            2, len(x_series_device.ao_physical_chans))
        channels_to_test = random.sample(
            x_series_device.ao_physical_chans, number_of_channels)

        with nidaqmx.Task() as task:
            task.ao_channels.add_ao_voltage_chan(
                flatten_channel_string([c.name for c in channels_to_test]),
                max_val=10, min_val=-10)

            number_of_samples = random.randint(1, number_of_channels - 1)
            values_to_test = numpy.float64([
                random.uniform(-10, 10) for _ in range(number_of_samples)])

            with pytest.raises(DaqError) as e:
                task.write(values_to_test, auto_start=True)
            assert e.value.error_code == -200524
pascal_voc_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl[lbl==255] = 0
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
ade20k_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl = self.encode_segmap(lbl)
        classes = np.unique(lbl)
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)
        assert(np.all(classes == np.unique(lbl)))

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
unet_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_3d_data_slices(slices):  # get data in Hunsfield Units
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from v 9

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
unet_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def get_pixels_hu(slices):
    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)

    # Set outside-of-scan pixels to 0
    # The intercept is usually -1024, so air is approximately 0
    image[image == -2000] = 0

    # Convert to Hounsfield units (HU)
    ### slope can differ per slice -- so do it individually (case in point black_tset, slices 95 vs 96)
    ### Changes/correction - 31.01.2017
    for slice_number in range(len(slices)):

        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)    

    return np.array(image, dtype=np.int16)
lungs_var3_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def get_3d_data_slices(slices):  # get data in Hunsfield Units
    #slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key=lambda x: int(x.InstanceNumber))  # was x.InstanceNumber
    slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v 8

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
lungs_var3_d8g_222f.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def get_3d_data_hu(path):  # get data in Hunsfield Units
    slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key=lambda x: int(x.InstanceNumber))  # was x.InstanceNumber
    #slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v8 - BUGGY 
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from 22.02

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
pyelastix.py 文件源码 项目:pyelastix 作者: almarklein 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def _get_dtype_maps():
    """ Get dictionaries to map numpy data types to ITK types and the 
    other way around.
    """

    # Define pairs
    tmp = [ (np.float32, 'MET_FLOAT'),  (np.float64, 'MET_DOUBLE'),
            (np.uint8, 'MET_UCHAR'),    (np.int8, 'MET_CHAR'),
            (np.uint16, 'MET_USHORT'),  (np.int16, 'MET_SHORT'),
            (np.uint32, 'MET_UINT'),    (np.int32, 'MET_INT'),
            (np.uint64, 'MET_ULONG'),   (np.int64, 'MET_LONG') ]

    # Create dictionaries
    map1, map2 = {}, {}
    for np_type, itk_type in tmp:
        map1[np_type.__name__] = itk_type
        map2[itk_type] = np_type.__name__

    # Done
    return map1, map2
dataset.py 文件源码 项目:sampleRNN_ICLR2017 作者: soroushmehr 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __linear_quantize(data, q_levels):
    """
    floats in (0, 1) to ints in [0, q_levels-1]
    scales normalized across axis 1
    """
    # Normalization is on mini-batch not whole file
    #eps = numpy.float64(1e-5)
    #data -= data.min(axis=1)[:, None]
    #data *= ((q_levels - eps) / data.max(axis=1)[:, None])
    #data += eps/2
    #data = data.astype('int32')

    eps = numpy.float64(1e-5)
    data *= (q_levels - eps)
    data += eps/2
    data = data.astype('int32')
    return data
dataset.py 文件源码 项目:sampleRNN_ICLR2017 作者: soroushmehr 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __batch_quantize(data, q_levels, q_type):
    """
    One of 'linear', 'a-law', 'mu-law' for q_type.
    """
    data = data.astype('float64')
    data = __normalize(data)
    if q_type == 'linear':
        return __linear_quantize(data, q_levels)
    if q_type == 'a-law':
        return __a_law_quantize(data)
    if q_type == 'mu-law':
        # from [0, 1] to [-1, 1]
        data = 2.*data-1.
        # Automatically quantized to 256 bins.
        return __mu_law_quantize(data)
    raise NotImplementedError
tango_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def iter_tango_logs(directory, logs, topics=[]):
    for log in logs: 
        directory = os.path.expanduser(os.path.join(args.directory, log))
        print('Accessing Tango directory {:}'.format(directory))
        dataset = TangoLogReader(directory=directory, scale=im_scale) 
        for item in dataset.iterframes(topics=topics): 
            bboxes = item.bboxes
            targets = item.coords


# # If RGB_VIO, RGB, RGB_VIO in stream, then interpolate pose
# # b/w the 1st and 3rd timestamps to match RGB timestamps
# if len(self.__item_q) >= 3 and \
#    self.__item_q[-1][0] == self.__item_q[-3][0] == 1 and \
#    self.__item_q[-2][0] == 0: 
#     t1,t2,t3 = self.__item_q[-3][1], self.__item_q[-2][1], self.__item_q[-1][1]
#     w2, w1 = np.float32([t2-t1, t3-t2]) / (t3-t1)
#     p1,p3 = self.__item_q[-3][2], self.__item_q[-1][2]
#     p2 = p1.interpolate(p3, w1)
#     self.on_frame(t2, t2, p2, self.__item_q[-2][2])
#     print np.array_str(np.float64([t1, t2, t3]) * 1e-14, precision=6, suppress_small=True), \
#         (t2-t1) * 1e-6, (t3-t2) * 1e-6, w1, w2, p2
uw_rgbd.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def load_ply(fn, version): 
            """ Retrieve aligned point cloud for each scene """ 

            if version == 'v1': 
                raise ValueError('''Version %s not supported. '''
                                 '''Check dataset and choose either v1 or v2 scene dataset''' % version)
                # P = np.loadtxt(os.path.expanduser(fn), usecols=(2,3,4,5,6,7,8), dtype=np.float64)
                # return map(lambda p: RigidTransform(Quaternion.from_wxyz(p[:4]), p[4:]), P)
            elif version == 'v2': 
                ply = PlyData.read(os.path.expanduser(fn))
                xyz = np.vstack([ply['vertex'].data['x'], 
                                 ply['vertex'].data['y'], 
                                 ply['vertex'].data['z']]).T
                rgb = np.vstack([ply['vertex'].data['diffuse_red'], 
                                 ply['vertex'].data['diffuse_green'], 
                                 ply['vertex'].data['diffuse_blue']]).T
                return xyz, rgb

            else: 
                raise ValueError('''Version %s not supported. '''
                                 '''Check dataset and choose either v1 or v2 scene dataset''' % version)
transformations.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
    >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
    True

    """
    q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
    nq = numpy.dot(q, q)
    if nq < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / nq)
    q = numpy.outer(q, q)
    return numpy.array((
        (1.0-q[1, 1]-q[2, 2],     q[0, 1]-q[2, 3],     q[0, 2]+q[1, 3], 0.0),
        (    q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2],     q[1, 2]-q[0, 3], 0.0),
        (    q[0, 2]-q[1, 3],     q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
        (                0.0,                 0.0,                 0.0, 1.0)
        ), dtype=numpy.float64)
test_delayed_io.py 文件源码 项目:dask_gdf 作者: gpuopenanalytics 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_frame_dtype_error():
    nelem = 20

    df1 = gd.DataFrame()
    df1['bad'] = np.arange(nelem)
    df1['bad'] = np.arange(nelem, dtype=np.float64)

    df2 = gd.DataFrame()
    df2['bad'] = np.arange(nelem)
    df2['bad'] = np.arange(nelem, dtype=np.float32)


    ddf1 = dgd.from_pygdf(df1, npartitions=5)
    ddf2 = dgd.from_pygdf(df2, npartitions=5)

    combined = dgd.from_delayed(ddf1.to_delayed() + ddf2.to_delayed())

    with pytest.raises(ValueError) as raises:
        out = combined.compute()

    print("out")
    raises.match(r"^Metadata mismatch found in `from_delayed`.")
    raises.match(r"\s+\|\s+".join(['bad', 'float32', 'float64']))
transformations.py 文件源码 项目:Neural-Networks-for-Inverse-Kinematics 作者: paramrajpura 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]])
transformations.py 文件源码 项目:Neural-Networks-for-Inverse-Kinematics 作者: paramrajpura 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def __init__(self, initial=None):
        """Initialize virtual trackball control.

        initial : quaternion or rotation matrix

        """
        self._axis = None
        self._axes = None
        self._radius = 1.0
        self._center = [0.0, 0.0]
        self._vdown = numpy.array([0.0, 0.0, 1.0])
        self._constrain = False
        if initial is None:
            self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0])
        else:
            initial = numpy.array(initial, dtype=numpy.float64)
            if initial.shape == (4, 4):
                self._qdown = quaternion_from_matrix(initial)
            elif initial.shape == (4, ):
                initial /= vector_norm(initial)
                self._qdown = initial
            else:
                raise ValueError("initial not a quaternion or matrix")
        self._qnow = self._qpre = self._qdown
test_norm_query.py 文件源码 项目:search-MjoLniR 作者: wikimedia 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_vectorized_jaccard_sim():
    # The vectorized version of jaccard similarity is 20x faster, but it is
    # harder to understand. Compute it the simple way and compare to the
    # vectorized version
    def jaccard_sim(X, Y):
        assert len(X) == len(Y)
        a = np.sum((X == 1) & (Y == 1))
        d = np.sum((X == 0) & (Y == 0))
        return a / float(len(X) - d)

    def binary_sim(mat):
        n_rows = mat.shape[0]
        out = np.empty((n_rows, n_rows), dtype=np.float64)
        for i in range(n_rows):
            out[i][i] = 1.
            for j in range(0, i):
                out[i][j] = jaccard_sim(mat[i], mat[j])
                out[j][i] = out[i][j]
        return out

    # Simulate 200 queries with 100 shared page ids
    matrix = np.random.rand(200, 100) > 0.7
    simple = binary_sim(matrix)
    vectorized = mjolnir.norm_query._binary_sim(matrix)
    assert np.array_equal(simple, vectorized)
model.py 文件源码 项目:lstm-poetry 作者: dvictor 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def sample(self, sess, chars, vocab, num, prime, temperature):
        state = self.cell.zero_state(1, tf.float32).eval()
        for char in prime[:-1]:
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed = {self.input_data: x, self.initial_state: state}
            [state] = sess.run([self.final_state], feed)

        def weighted_pick(a):
            a = a.astype(np.float64)
            a = a.clip(min=1e-20)
            a = np.log(a) / temperature
            a = np.exp(a) / (np.sum(np.exp(a)))
            return np.argmax(np.random.multinomial(1, a, 1))

        char = prime[-1]
        for n in range(num):
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed = {self.input_data: x, self.initial_state: state}
            [probs, state] = sess.run([self.probs, self.final_state], feed)
            p = probs[0]
            sample = weighted_pick(p)
            char = chars[sample]
            yield char
dbase.py 文件源码 项目:corporadb 作者: nlesc-sherlock 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def connectToDB(dbName=None, userName=None, dbPassword=None, dbHost=None,
                dbPort=None, dbCursor=psycopg2.extras.DictCursor):
    '''
    Connect to a specified PostgreSQL DB and return connection and cursor objects.
    '''
    # Start DB connection
    try:
        connectionString = "dbname='" + dbName + "'"
        if userName != None and userName != '':
            connectionString += " user='" + userName + "'"
        if dbHost != None and dbHost != '':
            connectionString += " host='" + dbHost + "'"
        if dbPassword != None and dbPassword != '':
            connectionString += " password='" + dbPassword + "'"
        if dbPort != None:
            connectionString += " port='" + str(dbPort) + "'"
        connection  = psycopg2.connect(connectionString)
        register_adapter(numpy.float64, addapt_numpy_float64)
        register_adapter(numpy.int64, addapt_numpy_int64)
    except:
        raise
    # if the connection succeeded get a cursor
    cursor = connection.cursor(cursor_factory=dbCursor)
    return connection, cursor
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_face_mask(img, img_l):
    img = np.zeros(img.shape[:2], dtype = np.float64)

    for idx in OVERLAY_POINTS_IDX:
        cv2.fillConvexPoly(img, cv2.convexHull(img_l[idx]), color = 1)

    img = np.array([img, img, img]).transpose((1, 2, 0))
    img = (cv2.GaussianBlur(img, (BLUR_AMOUNT, BLUR_AMOUNT), 0) > 0) * 1.0
    img = cv2.GaussianBlur(img, (BLUR_AMOUNT, BLUR_AMOUNT), 0)

    return img
main.py 文件源码 项目:FaceSwap 作者: Aravind-Suresh 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def smooth_colors(src, dst, src_l):
    blur_amount = BLUR_FRACTION * np.linalg.norm(np.mean(src_l[LEFT_EYE_IDX], axis = 0) - np.mean(src_l[RIGHT_EYE_IDX], axis = 0))
    blur_amount = (int)(blur_amount)

    if blur_amount % 2 == 0:
        blur_amount += 1

    src_blur = cv2.GaussianBlur(src, (blur_amount, blur_amount), 0)
    dst_blur = cv2.GaussianBlur(dst, (blur_amount, blur_amount), 0)

    dst_blur += (128 * ( dst_blur <= 1.0 )).astype(dst_blur.dtype)

    return (np.float64(dst) * np.float64(src_blur)/np.float64(dst_blur))


问题


面经


文章

微信
公众号

扫码关注公众号